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Protein–RNA interactions play fundamental roles in many biological processes, such as regulation of gene
expression, RNA splicing, and protein synthesis. The understanding of these processes improves as new
structures of protein–RNA complexes are solved and the molecular details of interactions analyzed. How-
ever, experimental determination of protein–RNA complex structures by high-resolution methods is
tedious and difficult. Therefore, studies on protein–RNA recognition and complex formation present
major technical challenges for macromolecular structural biology. Alternatively, protein–RNA interac-
tions can be predicted by computational methods. Although less accurate than experimental measure-
ments, theoretical models of macromolecular structures can be sufficiently accurate to prompt
functional hypotheses and guide e.g. identification of important amino acid or nucleotide residues. In this
article we present an overview of strategies and methods for computational modeling of protein–RNA
complexes, including software developed in our laboratory, and illustrate it with practical examples of
structural predictions.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Proteins and RNAs are the two main workhorses in the cell.
Quite often they function together in many cellular processes, such
as the maintenance of chromosome ends, transcription, RNA trans-
port, RNA processing, regulation of gene expression, and protein
synthesis [1,2]. It has been found that most of the human genome
is transcribed into RNA, of which only a small fraction is translated
into proteins [3], and that non-coding RNA transcription is also
pervasive in bacteria [4]. The importance of protein–RNA assem-
blies is accentuated by the fact that most of RNAs studied so far re-
quire proteins to exert their function, and form ribonucleoprotein
(RNP) complexes at least at some stage of their life cycle. Pro-
tein–RNA interactions are therefore essential to basic functioning
of the cellular metabolism and to the survival of all organisms. De-
fects in protein–RNA interactions are implicated in a number of
diseases, ranging from neurological disorders to cancer [5,6].

There are many protein domain families involved in RNA recog-
nition, which are found in RNA-binding proteins (RBPs) [7]. In
addition to domains with a well-defined fold, RNA can be recog-
nized and bound by structurally disordered regions that change
the conformation upon RNA binding, as exemplified by ribosomal
proteins [8]. Obtaining three dimensional (3D) structures of pro-
tein–RNA complexes aids the efforts in the determination of phys-
ico-chemical principles of protein–RNA interactions. It reveals the
details of interactions in RNPs and provides information about the
specificity of mutual recognition of different proteins and RNAs.
This knowledge is essential for the understanding of biological
roles of protein–RNA interactions. However, the experimental
determination of RNA–protein complexes (RNPs) structures is a
slow and laborious process [9,10]. High-resolution structures of
protein–RNA complexes were relatively rare until the end of the
20th century. As of June 2013, 1529 macromolecular complexes
involving both protein and RNA components (but excluding RNA/
DNA hybrids) were available in the Protein Data Bank (PDB),
including 1323 solved by X-ray crystallography, 76 by Nuclear
Magnetic Resonance (NMR) spectroscopy, and 130 by other meth-
ods. These structures contained 17138 protein chains interacting
with RNAs, but many proteins were highly similar to each other.
After removing redundant protein chains with sequence identity
>90% or >40%, only 929 or 594 RNA-bound proteins with experi-
mentally determined structures remained, respectively.

Despite the fact that the structures of many protein–RNA com-
plexes have been experimentally determined, for many RNPs, e.g.
the spliceosome, RNA-Induced Silencing Complex (RISC), com-
plexes containing Clustered Regularly Interspaced Short Palin-
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dromic Repeats (CRISPR) and Cleavage/Polyadenylation Specificity
Factor (CPSF), complete high-resolution structures (proteins com-
plexed with RNA) are not yet available. For many such complexes,
partial experimental data are available such as high-resolution
structures of all or some isolated components in unbound confor-
mations. For some complexes, low-resolution structures are avail-
able, obtained with e.g. cryo-electron microscopy (cryo-EM) or
small angle X-ray or neutron scattering (SAXS/SANS) techniques.

Given the scarcity of experimentally determined structures of
RNPs, computational techniques can complement existing data to
help elucidation of protein–RNA interactions. There exists a wealth
of low-resolution experimental data that identify the interacting
components and often tie them to particular functional states. As
an example, chemical cross-linking combined with mass spec-
trometry is often used to determine interacting subunits within a
complex and sometimes allows the elucidation of individual inter-
acting residues [11]. These data can be exploited by bioinformatics
methods for structure prediction. However, while the methodology
for prediction and modeling of proteins and protein–protein com-
plexes is very well established (reviews: [12–14]), there are much
fewer methods for predicting and modeling structures of RNA mol-
ecules and protein–RNA complexes [15,16].

In this article we review computational approaches for model-
ing of protein–RNA complex structures, with a focus on computer
programs that are publicly available (e.g. as web servers or down-
loadable programs for local installation) and are easy to use by
non-experts. We devote particular attention to combination of var-
ious complementary methods, and to the use of experimental
information in the process of modeling. The selection of computa-
tional tools described and recommended in this article is based on
various external benchmarks and on the authors’ subjective expe-
rience. In particular, whenever appropriate, tools developed in the
authors’ laboratory are described. Hence, we must emphasize that
the recommended workflows can be realized by the use of various
different tools, also those that were not mentioned in this article
due to space constraints.
2. Structure prediction for the individual components of a
complex

Ideally, the prediction of protein–RNA complex structure should
be based on the knowledge of atomic structures of the compo-
nents, as determined by X-ray crystallography or NMR. However,
in many cases experimentally determined structures of compo-
nents of the complex are not available. For many applications they
can be substituted by structures modeled computationally. To this
end, a large number of computer programs have been developed,
which now allow for reasonably accurate and practically useful
predictions of macromolecular 3D structures. It must be empha-
sized that the protein 3D structure modeling field is more mature;
for nearly two decades, the state-of-the art has been systematically
assessed by the Critical Assessment of protein Structure Prediction
(CASP) experiment organized by John Moult and coworkers (http://
predictioncenter.org/). However, recent developments in the struc-
tural bioinformatics of RNA suggests that essentially the same
principles are applicable for modeling of RNAs [16]. The most typ-
ical modeling strategies are reviewed below.
2.1. Template-based modeling

The most reliable strategy of macromolecular structure predic-
tion is template-based modeling [17], also called comparative
modeling or homology modeling. It relies on an observation that
evolutionarily related (homologous) macromolecules often retain
the same three-dimensional fold (i.e. the 3D arrangement and
connectivity of secondary structure elements) despite the accumu-
lation of divergent mutations [18]. Consequently, this strategy re-
quires the identification of a molecule, for which the structure is
known, and which can be used as a ‘‘template’’. Further, each ele-
ment of the target sequence must be aligned to a structurally
equivalent element in the template sequence/structure. In fact,
the generation of a practically useful alignment is the most impor-
tant step of template-based modeling. In the protein structure pre-
diction field, the identification of modeling templates and the
generation of target-template alignments has been termed ‘‘fold-
recognition’’ and it is usually carried out as a separate step, before
the actual 3D model building [19].

High sequence similarity is not a prerequisite for template-
based modeling. In fact, it is possible to create accurate homology
models even if the sequence identity between the target and the
template is zero [20]. However, on the average, molecules with
higher sequence similarity tend to exhibit more similar structures
[18]. For highly similar sequences it is generally easier to generate
a correct alignment, therefore the use of templates with higher se-
quence similarity is recommended. Apart from sequence diver-
gence, structures may change because of environmental factors,
e.g. the binding of other molecules [21]. Hence, the outcome of
template-based modeling strongly depends on the choice of a tem-
plate, whose biological state should correspond as closely as possi-
ble to the desired biological state of the target molecule to be
modeled. For template-based modeling of components of pro-
tein–RNA complexes, it is recommended to use elements of related
complexes as templates, as this usually helps to preserve the com-
plementarity of the interface. So for instance for modeling of a
complex between an amino acid-tRNA synthetase (aaRS) and its
target tRNA, the best template is likely to be a structure of another,
related aaRS–tRNA complex, rather than structures of related aaRSs
and tRNAs solved in isolation.

There exist numerous computational methods for protein fold-
recognition that facilitate the task of template structure identifica-
tion and generation of target-template alignments. Our group has
developed a web server (GeneSilico metaserver, http://genesili-
co.pl/meta2/) that runs numerous third-party methods for protein
structure prediction, including more than 10-fold recognition
methods, generates a user-friendly graphical output and calculates
consensus between different predictions [22].

For RNA there exist much fewer automated computational
methods that can be used to identify a modeling template and gen-
erate a target-template alignment (see Table 1 for examples). For
RNA templates with high sequence identity, simple pairwise se-
quence search such as with BLAST [23] may be sufficient. Such util-
ity is available e.g. via the ModeRNA modeling server [24], which
uses a PARALIGN method [25]. However, the detection of remotely
related structural templates for RNA modeling is difficult. Many
methods developed so far serve the task of detection of homology
to RNA families, e.g. those from the Rfam database, http://
rfam.sanger.ac.uk/ regardless of the availability of a 3D structural
information (for a critical comparison of algorithms see [26]).
Among the methods for the detection of homology and sequence
alignment with RNA families that may contain potential templates
for modeling, we recommend Infernal (http://infernal.janelia.org/)
[27] and CMcompare [28]. Both of these methods rely on covari-
ance models, which describe probabilistically the conservation of
both sequence and secondary structure (i.e. patters of Watson–
Crick base pairs) in families of RNA molecules. In addition to
searching for global matches of the target sequence to RNAs with
known structure, we recommend also to search for local structural
motifs, with tools such as RMDetect [29] or JAR3D [30].

As mentioned above, the actual modeling of protein and RNA 3D
structures is a relatively easy task, provided that a target structure
is identified and a reasonable target-template alignment is
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Table 1
Examples of software tools for sequence searches and alignment.

Method name Molecule
type

Description Refs. Web link Input

BLAST Protein, RNA Fast local sequence similarity search,
used to find homologs of protein or
RNA sequences

[23] http://blast.ncbi.nlm.nih.gov/ Sequence

PARALIGN Protein, RNA An alternative to BLAST – similar to
Smith–Waterman in sensitivity and
to BLAST in speed; can be used for
finding homologs that may pass
undetected by other tools

[25] http://www.paralign.org/ Sequence

GeneSilico
metaserver

Protein A gateway to over 100 bioinformatics
tools for prediction of different
features of proteins (domains, protein
disorder, secondary structure,
transmembrane proteins, fold
recognition, protein–RNA interaction,
etc.)

[22] http://genesilico.pl/meta2/ Sequence, alignment

Infernal RNA Usage of RNA covariance models
(CMs). Provides sensitive sequence
database searching for RNA homologs
and generates structure-based RNA
sequence alignment

[27] http://infernal.janelia.org/ Sequence, secondary
structure

CMcompare RNA Comparison of RNA CMs. Can be used
to find similarities to models present
in the Rfam database

[28] http://www.tbi.univie.ac.at/software/
cmcompare/

Alignment, secondary
structure

RMDetect RNA Detection of several structural motifs
in RNA sequences

[29] http://rmdetect.sourceforge.net/ Sequence, alignment

JAR3D RNA Detection of recurrent structural
motifs in RNA sequences

[30] http://rna.bgsu.edu/main/webapps/jar3d/ Sequence, alignment
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available. There exist numerous tools for template-based modeling
of proteins; among the most popular programs with user-friendly
implementations there are MODELLER [31] and SWISS-MODEL [32]
that are based on different approaches: minimization of spatial re-
straints and fragment copying, respectively. Essentially the same
two approaches have been implemented in programs for tem-
plate-based modeling of RNA: MacroMoleculeBuilder (MMB; pre-
viously RNABuilder) [33] and ModeRNA [34] (Table 2).
2.2. Template-free modeling and hybrid modeling

In the absence of a structural template, it is possible to generate
a model of a protein or RNA 3D structure using alternative meth-
ods. There exist a host of methods that simulate the folding of mac-
romolecular structures starting from sequence information alone,
e.g. ROSETTA [35] and I-TASSER [36] for proteins, and FARNA
[37], RNAComposer [38] and MC-Fold|MC-Sym [39] for RNA. They
sample the conformational space and assess the conformations ob-
tained to identify candidate structures that exhibit low ‘‘score’’ that
is typically a combination of physical energy terms and statistical
criteria.

However, template-free structure prediction is difficult. In prac-
tice, models of protein or RNA molecules longer than 80 residues
that are folded completely ‘‘de novo’’ are very rarely accurate en-
ough to make them useful for the next step, i.e. prediction of inter-
actions. Template-free modeling is therefore often performed with
additional data used as constraints and restraints. First, some parts
of the model of a large (>80 residues) macromolecule can be built
by a template-based method and constrained as rigid bodies, and
free modeling is then applied only to sequence fragments, for
which a template is not available or where the target-template
alignment is uncertain. Second, information about secondary
structure and information about long-range contacts (inferred
experimentally or predicted computationally) can be encoded in
the form of distance and orientation restraints. Third, information
from experiments such as cryo-EM or SAXS can be used in the form
of low-resolution restraints on the shape of molecules under con-
sideration. MMB [40] can be cited as an example of a modeling
method that is capable of handling both proteins and RNAs, with
the aid of experimental data.

There exist methods for interactive (user-guided) modeling of
macromolecular structures based on assembly of fragments de-
rived from various structures that are predicted to be similar to dif-
ferent parts of the target. Computational tools and the graphics
front-end facilitate the choice, the manipulation, and the visualiza-
tion of fragments, and often provide specialized algorithms for lo-
cal optimization of geometry. The approach that allows the expert
user to rearrange and recombine multiple template structures has
been particularly popular in the RNA modeling field, with methods
such as S2S/Assemble [41,42] or RNA2D3D [43]. General-purpose
graphical methods that facilitate the modeling of protein and nu-
cleic acid molecules and their complexes include: Chimera [44],
VMD [45], PyMOL [46], and SwissPDBViewer [47].
2.3. Model quality evaluation and local refinement

All structural models contain errors. They can range from glob-
ally wrong structures (e.g. due to the use of a wrong template, or
due to improper folding by the template-free modeling method),
to register shifts in sequence (usually due to errors in the align-
ment), to local inaccuracies such as wrong conformation of loops,
steric clashes or problems with stereochemical parameters (e.g.
wrong bond lengths). The accuracy of models is always limited
by the errors. However, the impact of errors on the practical utility
of models depends on the type of the question asked. Importantly,
for some users high accuracy of some parts (e.g. regions of protein–
RNA interaction) may be subjectively more important than other
regions. The interpretation of a model should be made only at
the level of its accuracy or lower, i.e. one should not make conclu-
sions about atomic-level interactions for a model that is supposed
to be accurate only at a level of individual residues. Hence, accu-
racy of each structural model has to be evaluated before the model
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Table 2
Examples of software tools for protein and/or RNA structure prediction and modeling. Representation (in typical analyses): A-use of full-atom representation of macromolecular
3D structures, CG-use of models with a coarse-grained (reduced) representation.

Method name Molecule
type

Description Refs. Web link Representation Input

MODELLER Protein Implements homology modeling of
protein 3D structures by satisfaction
of spatial restraints. Can be used as a
standalone program or online as a
webserver

[31] http://salilab.org/modeller/ A Alignment, restraints,
pdb file

SWISS-MODEL Protein Implements a rigid fragment
assembly approach for homology
modeling of protein 3D structures.
Can be used via fully-automated
server (SWISS-MODEL Workspace) or
via the DeepView structure viewer

[32] http://swissmodel.expasy.org/ A Alignment, pdb file

ROSETTA Protein Conducts fragment assembly of
protein 3D structures by a Monte
Carlo approach, guided by an energy
function that mixes knowledge-based
and physical elements. Can be
installed locally or used via a
webserver (ROBETTA)

[35] https://www.rosettacommons.org/ A, CG Sequence

I-TASSER Protein Conducts hybrid modeling using a
combination of fold-recognition and
Monte Carlo-based assembly of
fragments and folding simulation

[36] http://zhanglab.ccmb.med.umich.edu/I-
TASSER/

A, CG Sequence

QA-RecombineIt Protein Builds a hybrid model using
fragments of models generated by
other protein structure modeling
methods. To accomplish this task, the
program uses model quality
assessment (QA) and a fragment
recombination algorithm
(RecombineIt)

[51] http://genesilico.pl/qarecombineit/ A Sequence, pdb file

ModeRNA RNA Builds comparative models of RNA 3D
structures based on known structures
as templates, using a fragment
replacement approach. Aavailable as
a web server and as a standalone
program. Allows for modeling of
modified nucleotides

[24] http://genesilico.pl/moderna/ A Alignment, pdb file

FARNA/FARFAR RNA Counterpart of ROSETTA for de novo
modeling of RNA. Conducts fragment
assembly of RNA structures

[37] https://www.rosettacommons.org/
manuals/rosetta3_user_guide/
index.html

A, CG Sequence

RNA Composer RNA Predicts large RNA 3D structures by
fragment assembly

[38] http://rnacomposer.ibch.poznan.pl/
Home

A Sequence, secondary
structure

MC-Fold | MC-Sym RNA Predicts RNA 2D and 3D structures by
enumeration of alternative
conformations

[39] http://www.major.iric.ca/MC-Fold/ A Sequence, secondary
structure

S2S/Assemble RNA An interface for largely manual
modeling of RNA structures with the
aid of heterogeneous data, such as
multiple sequence alignments,
secondary and tertiary structures

[41,42] http://bioinformatics.org/S2S/ A Alignment, secondary
structure, pdb file

RNA2D3D RNA Generates a first-pass, low-resolution
3D structures from secondary
structure that can be used to explore
alternative 3D conformations

[43] http://www-lmmb.ncifcrf.gov/users/
bshapiro/rna2d3d/rna2d3d.html

A Sequence, secondary
structure

SimRNA RNA Conducts folding simulations of RNA
using a Monte Carlo approach and a
knowledge-based energy function

[16] Program is available upon request from
the authors of this article

CG Sequence, secondary
structure

Macro-Molecule-
Builder

RNA,
protein

Constructs 3D structures of
individual macromolecules and
complexes by applying user-specified
restraints and physical constraints

[33] https://simtk.org/home/rnatoolbox A Sequence, pdb file

HyperChem Protein,
RNA

A molecular modeling environment
allowing 3D visualization and
animation with quantum chemical
calculations, molecular mechanics,
dynamics etc.

HyperCube,
Inc.

http://www.hyper.com/ A Pdb file

FILTREST3D Protein,
RNA

A server for scoring and ranking of
models according to their agreement
with user-defined restraints
(distances, secondary structure etc.)

[73] http://filtrest3d.genesilico.pl/filtrest3d/
index.html

A, CG Restraints, pdb file
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Table 3
Examples of software tools for quality evaluation and local refinement of macromolecular models. Representation (in typical analyses): A-use of full-atom representation of
macromolecular 3D structures, CG-use of models with a coarse-grained (reduced) representation.

Method
name

Molecule
type

Description Refs. Web link Representation Input

Pcons Protein Identifies potentially best models in
large datasets of alternative by
combination of clustering and
application of knowledge-based
scoring functions

[48] http://pcons.net/ A, CG Pdb file

ModFold Protein Identifies potentially best models in
large datasets of alternative by
combination of clustering and
application of knowledge-based
scoring functions. If a single model is
provided, alternative models are
generated automatically. Provides
global and local (per-residue) quality
of 3D protein models

[49] http://www.reading.ac.uk/bioinf/ModFOLD/
index.html

A, CG Sequence, pdb
file

Meta-
MQAP

Protein Generates consensus prediction of
model quality based on results of
eight primary MQAPs. Provides global
and local (per-residue) quality of 3D
protein models

[50] https://genesilico.pl/toolkit/
unimod?method=MetaMQAPII

A Pdb file

RASP RNA Provides global and local (per-
residue) quality of 3D RNA models
using a set of all-atom and coarse-
grained knowledge-based potentials.
Also available as a web server
(WebRASP)

[52,53] http://melolab.org/webrasp/home.php A, CG Pdb file
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is used for any purpose. Ideally, a prospective user of a given model
should be informed if a model is likely to be globally accurate (i.e. if
its components are placed more or less where they are in reality),
and what are the relative inaccuracies of its particular regions.

The absolute evaluation of accuracy requires a comparison of
the model to the experimentally determined structure to be made,
but in most ‘‘real life’’ situations, models are built for such macro-
molecules, for which no experimental structure is available, hence
predictive methods must be used. This problem has been ad-
dressed initially in the protein structure prediction field, and
numerous so-called Model Quality Assessment Programs (MQAPs)
were developed (Table 3). Based on the results of recent CASP
experiments, we recommend the use of methods such as Pcons
[48], ModFold [49], and our own method QA-RecombineIt, which
not only predicts the quality of individual protein models [50],
but also recombines best parts into an optimized hybrid model
[51]. More recently, MQAPs for RNA models have been also devel-
oped. From our own experience, among the publicly available
methods we tested, the RASP force field [52] exhibits very good
performance in discrimination of highly to moderately accurate
RNA structure models from ones that are completely misfolded.
RASP has been recently made available as a web server [53]. Fur-
ther, for discrimination of protein–RNA complex models special-
ized scoring functions have been developed, which will be
discussed later, in the context of protein–RNA docking.

2.4. Predicting disordered structures

Methods discussed above are based on the assumption that a
well-defined three-dimensional structure exists that can be deter-
mined experimentally or obtained by a predictive approach. How-
ever, many macromolecules are known to have either multiple
conformational states (such as allosteric proteins and riboswitch-
es), or possess intrinsically disordered/unstructured regions (IURs).
Many RNA-binding proteins possess IURs that may to some extent
become ordered only upon RNA binding [54]. The identification of
IURs may be therefore used to eliminate disordered sequences
from the initial process of model building for the individual
components (especially with template-based methods). However,
IURs may need to be included in some form at the stage of pro-
tein–RNA complex building.

Recently, a number of methods for predicting structural disor-
der in protein sequences have been developed. To leverage on
these developments, our group has developed a web server Meta-
disorder [55] that predicts IURs based on input from a number of
individual methods, with a use of machine learning techniques.
To our best knowledge, equivalent methods for IUR prediction in
RNA sequences are not yet available. It is however possible to infer
certain types of IURs in RNA sequences by studying the results of
secondary structure prediction methods and identifying long re-
gions without predicted base-pairing, or in which different meth-
ods predict different structures. The RNA secondary structure
prediction meta-server developed in our group (http://genesili-
co.pl/rnametaserver/) can aid the users in accomplishing this task.

3. Structure prediction of protein–RNA complexes

3.1. Prediction of RNA-binding residues in proteins

The question whether a given protein binds RNA or not remains
a challenge for computational methods, while it can be now rela-
tively easily answered with experimental methods. However, once
a given protein is found to bind RNA, computational methods can
be very useful in predicting amino acid residues that are most
likely to form RNA-binding sites. In particular, the availability of
a protein structure (determined experimentally or predicted com-
putationally) can greatly facilitate the prediction of the RNA-bind-
ing site, which is typically formed by surface-exposed residues that
are close to each other in space, but not necessarily in sequence.

A number of methods have been developed to predict
RNA-binding residues from protein sequence alone or from protein
structure (Table 4). Based on recent surveys [56,57] we recom-
mend to use different approaches, depending on the data available.
If a structure is available for the target protein, the user should
check whether the target exhibits similarity to other RNA-binding
proteins with already known structures in complex with RNA. If
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Table 4
Examples of software tools for prediction of RNA-binding residues in protein sequences.

Method name Description Refs. Web link Input(protein only)

RNA BindR Plus Uses a naive Bayes classifier trained
on structures of protein–RNA
complexes found in the PDB

[58] http://einstein.cs.iastate.edu/RNABindRPlus/ Sequence

KYG Uses RNA-binding propensities of
individual residues, doublets of
spatially close residues, sequence
profiles, and combinations thereof

[59] http://cib.cf.ocha.ac.jp/KYG/ Alignment, pdb file

OPRA Calculates a score derived from
propensities of residues at known
protein–RNA interfaces weighed by
their accessible surface

[60] Program is available upon request from the authors Pdb file

DRNA Conducts a structural alignment to
identify sites similar to those already
known in other protein–RNA
complex structures, followed by
binding assessment with a DFIRE
statistical energy function

[61] http://sparks.informatics.iupui.edu/yueyang/server/dRNA-DB/ Pdb file
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this is the case, the RNA-binding site in the target is best predicted
‘‘by homology’’ to the template(s). This can be done manually, by
superposition of structures, or with the use of programs such as
RNABindRPlus [[58], new version available at: http://ein-
stein.cs.iastate.edu/RNABindRPlus], KYG [59], OPRA [60], and
DRNA [61]. For a target protein with known structure that has no
close homolog, we recommend to use KYG and to compare its re-
sult with predictors based on sequence alone (e.g. run via a meta-
server developed by our group and available at http://
iimcb.genesilico.pl/meta2/).

3.2. Modeling of protein–RNA complexes by macromolecular docking

Docking methods aim at predicting three-dimensional struc-
tures of macromolecular complexes, starting from the atomic coor-
dinates of their components. The larger molecule is usually
referred to as the receptor, while the smaller molecule is usually
called the ligand. The docking can be divided into two steps that
are analogous to template-free modeling of macromolecular struc-
ture: (i) sampling: the search of the conformational space of possi-
ble orientations and conformations of the components and thereby
generation of sample models (called poses or decoys) and (ii) scor-
ing: assessment of these models by a scoring function to distin-
guish near-native structures from non-native ones [62]. Some
methods combine both steps, while others specialize only in the
assessment of models/poses, leaving their generation to the user.

Structures of binding partners, which are solved individually or
with another partner, often undergo conformational changes dur-
ing association, in a process known as induced fit. Although during
recent years innovative solutions have been proposed to taking
macromolecular flexibility into account [63], modeling conforma-
tional changes involving backbone and loop rearrangements re-
mains the biggest challenge in the modeling of macromolecular
complexes [64]. Some methods model conformational changes of
docking components explicitly, which makes such analyses com-
putationally demanding, while others introduce a certain level of
‘fuzziness’ (review: [65]). There are also hybrid approaches that
initially carry out a global search for approximate solutions, fol-
lowed by the refinement phase, where small conformational
changes are explored.

Thus far, a large number of protein–protein docking methods
have been developed and assessed in the course of the Critical
Assessment of PRediction of Interactions (CAPRI) experiment, anal-
ogous to CASP (review: [66]). Compared to protein–protein dock-
ing, protein–RNA docking has received relatively little attention
from developers of computational methods. For instance in the last
CAPRI experiment [64], only four groups participated in the com-
petition of scoring protein–RNA alternative models. Most methods
for protein–RNA docking have been actually developed by modify-
ing protein–protein docking methods in order to accept nucleic
acid molecules as receptors and/or ligands. Only recently a docking
method 3dRPC was developed with a specific purpose of protein-
RNA docking, which takes special features of RNA surfaces into ac-
count. Computer programs for macromolecular docking that ac-
cept protein and RNA coordinates as an input to generate RNP
complex decoys include HADDOCK [68], GRAMM [69], HEX [70],
PatchDock [71], and FTDock [72] (Table 5). Among these tools,
HADDOCK is most versatile in the ability to use user-defined re-
straints (e.g. from experimental data) to drive the docking, and in
the handling of flexibility both on the protein and the nucleic acid
side; this method is also available as a web server [73]. During the
last CAPRI experiment, HADDOCK produced relatively best models
for protein–RNA complexes [64]. However, in our experience,
HADDOCK requires parametrization of RNA molecules to be
docked, which can be quite cumbersome even if a user intends to
run only the first stage of the docking process, i.e. the generation
of poses. On the other end of the spectrum there is GRAMM, which
is very easy to install and use, but is unable to directly utilize
experimental information.

It must be emphasized that purely theoretical protein–RNA
docking, while possible, performs rather poorly. For modeling of
protein–RNA complexes it is generally useful to combine the use
of docking methods for the generation of physically reasonable
alternative poses with additional ranking by external methods.
These may include: (i) the use of restraints derived from experi-
mental data or from computational predictions of residues in-
volved in binding (see above), e.g. as implemented in the
FILTREST3D method [74] and (ii) the use of scoring functions spe-
cialized in the discrimination of native-like structures. For exam-
ple, our group has developed statistical potentials QUASI-RNP
and DARS-RNP that are deliberately coarse-grained to take into ac-
count moderate conformational changes [75]. We have also devel-
oped a web server RNPdock (http://iimcb.genesilico.pl/RNPdock/)
that takes as an input a complex comprising a protein molecule
and an RNA molecule and conducts optimization of their mutual
position according to the DARS-RNP score.

3.3. Modeling of large macromolecular complexes guided by
experimental data

Most of docking methods have been developed having in mind
the modeling of binary complexes, i.e. comprising one protein

http://einstein.cs.iastate.edu/RNABindRPlus
http://einstein.cs.iastate.edu/RNABindRPlus
http://iimcb.genesilico.pl/meta2/
http://iimcb.genesilico.pl/meta2/
http://iimcb.genesilico.pl/RNPdock/
http://einstein.cs.iastate.edu/RNABindRPlus/
http://cib.cf.ocha.ac.jp/KYG/
http://sparks.informatics.iupui.edu/yueyang/server/dRNA-DB


Table 5
Examples of software tools for modeling of protein–RNA complexes by macromolecular docking and for scoring of protein–RNA structural models. Representation (in typical
analyses): A-use of full-atom representation of macromolecular 3D structures, CG-use of models with a coarse-grained (reduced) representation.

Method Description Ref. Web link Representation Input

HADDOCK A very versatile method for docking of various molecules including
proteins, nucleic acids and small molecules. Relies on user-defined
restraints derived from various sources. The program is available both
as a standalone program and a web server

[73] http://www.nmr.chem.uu.nl/
haddock/

A Pdb files,
restraints

GRAMM A low-resolution rigid body docking program that accepts protein as
well as nucleic acids and small molecules. Does not have a special
scoring function for protein–RNA complexes

[69] http://
vakser.bioinformatics.ku.edu/
resources/gramm/grammx/

A, CG Pdb files

HEX A fast algorithm that enables protein–protein and protein–nucleic acid
docking. Allows for restriction of docking to pre-defined binding sites.
Does not have a special scoring function for protein–RNA complexes

[70] http://hex.loria.fr/ A, CG Pdb files,
restraints

PatchDock A geometry-based molecular docking algorithm available both as a
standalone program and a web server. Allows for restriction of docking
to pre-defined binding sites. Does not have a special scoring function
for protein–RNA complexes

[71] http://bioinfo3d.cs.tau.ac.il/
PatchDock/

A Pdb files,
restraints

FTDock A rigid-body docking method. It does not accept modified residues and
does not have a special scoring function for protein–RNA complexes

[72] http://www.sbg.bio.ic.ac.uk/
docking/ftdock.html

A Pdb files

DARS-RNP &
QUASI-RNP

Knowledge-based, statistical and quasi-chemical potentials for scoring
of protein–RNA decoys obtained with other methods

[75] http://iimcb.genesilico.pl/
RNP/

A, CG Pdb files

RNPDock A server that takes as an input a preliminary model of protein–RNA
complex and conducts rigid body optimization using the DARS-RNP
score

Unpublished http://iimcb.genesilico.pl/
RNPdock/

A, CG Pdb files

3dRPC A protocol specifically developed for protein-RNA docking, which
includes both a docking procedure and a scoring function.

[67] http://biophy.hust.edu.cn/
download.html

A, CG pdb files

Integrative
Modeling
Platform
(IMP)

A versatile software toolkit for structural modeling of biomolecules
ranging in size and complexity from small peptides to large
macromolecular assemblies. Relies on integration of restraints from
diverse experiments

[76] http://salilab.org/imp/ A, CG Pdb files,
restraints

PyRy3D A simple software tool for structural modeling of macromolecular
complexes based on user-defined restraints. Enables the use of rigid
bodies, intrinsically disordered regions and regions of uncertain
structure

Unpublished http://iimcb.genesilico.pl/
pyry3d/

A, CG Pdb files,
restraints
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component and one RNA component. However, numerous impor-
tant RNP complexes such as those mentioned earlier in this article,
comprise multiple components. For multi-component complexes,
structure prediction by purely computational docking becomes ex-
tremely difficult, as the number of mutual placements and orienta-
tions of subunits that should be considered grows to very large
numbers. To address this problem, computational methods have
been developed that can use additional information from a variety
of sources, to restrict the search space and make the modeling
computationally manageable. Among the aforementioned tools,
HADDOCK web server is capable of data-driven simultaneous
docking of up to 6 components [73]. Methods such as Integrative
Modeling Platform (IMP; http://salilab.org/imp/) [76] or PyRy3D
(developed in the authors’ group: http://iimcb.genesilico.pl/pyr-
y3d/) are capable of building macromolecular models comprising
dozens of components. The modeling is guided primarily by re-
straints that can be derived from biochemical and biophysical
experiments for the determination of molecular shape (e.g. by
cryo-EM or SAXS), determination of interactions between different
subunits (e.g. by chemical cross-linking and mass spectrometry,
FRET or EPR spectroscopy, etc.), determination of binding sites by
various types of foot-printing and many other types of analyses.
With these tools it is possible to integrate, into a common frame-
work, structural information collected at multiple levels of the bio-
logical hierarchy: from single atoms, to residues, to protein and
nucleic acid subunits, to the higher-order assemblies. Usually a re-
sult of such a modeling is not just a single model, but a set of mod-
els that are maximally consistent with the input data. Hence, in
case of insufficient data, the user is expected to obtain multiple
alternative models, which should be further analyzed to plan addi-
tional experiments that would be capable of discrimination be-
tween various alternatives.

Among the example methods mentioned, IMP is definitely the
most versatile. It is actually not a single program, but a software
package that delivers a big variety of tools and scripts to proceed
from stages of data gathering, selection of representation for mod-
els, sampling and optimization schemes, to scoring and analyzing
of the models. However, it is also very complex, and for a typical
modeling exercise it requires essentially a dedicated program of
instructions to be written, which can be a significant barrier for
users. PyRy3D lies on the other end of the spectrum – it is rela-
tively simplistic, but was developed with user-friendliness in mind,
and can be run entirely via a graphics interface. A highlight of PyR-
y3D is that it facilitates the modeling of complexes comprising
components, for which some of the components are intrinsically
disordered or for which the 3D structure cannot be reliably pre-
dicted. This feature is particularly useful for the modeling of sin-
gle-stranded RNA regions and for regions of protein sequence
that fold only upon interaction with the target RNA.
4. Practical Examples

4.1. Modeling of a protein–RNA complex by combination of template-
based modeling and protein–RNA docking

We used template-based modeling for both RNA structure and
RNA–protein complex prediction in the course of the RNApuzzles
experiment [77], which is a counterpart of the CASP experiment
for RNA modeling. While most of the modeling tasks were focused
on modeling of just an RNA molecule, one task involved 3D struc-
ture prediction for a complex between the YbxF protein from Bacil-
lus subtilis and a SAM-I riboswitch.

First, the structures of the YbxF protein and the SAM-I ribo-
switch RNA were predicted by template-based modeling. We car-
ried out the protein fold-recognition procedure via the GeneSilico
metaserver (http://genesilico.pl/meta2/), and obtained alignment
of the YbxF sequence to the L7Ae protein with known structure
(PDB code: 2fc3). The model of YbxF 3D structure was built using
MODELLER [78] and its accuracy was predicted to be acceptable

http://salilab.org/imp/
http://genesilico.pl/meta2/
http://www.nmr.chem.uu.nl/haddock/
http://www.nmr.chem.uu.nl/haddock/
http://vakser.bioinformatics.ku.edu/resources/gramm/grammx/
http://vakser.bioinformatics.ku.edu/resources/gramm/grammx/
http://vakser.bioinformatics.ku.edu/resources/gramm/grammx/
http://hex.loria.fr/
http://bioinfo3d.cs.tau.ac.il/PatchDock/
http://bioinfo3d.cs.tau.ac.il/PatchDock/
http://www.sbg.bio.ic.ac.uk/docking/ftdock.html
http://www.sbg.bio.ic.ac.uk/docking/ftdock.html
http://iimcb.genesilico.pl/RNP/
http://iimcb.genesilico.pl/RNP/
http://iimcb.genesilico.pl/RNPdock/
http://iimcb.genesilico.pl/RNPdock/
http://biophy.hust.edu.cn/download.html
http://biophy.hust.edu.cn/download.html
http://salilab.org/imp/
http://iimcb.genesilico.pl/pyry3d/
http://iimcb.genesilico.pl/pyry3d/
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by the MetaMQAP method [50]. Likewise, the structure of the SAM-
I riboswitch RNA was predicted by first running a search with the
ModeRNA server [24] and detecting a match to a homologous RNA
from Thermoanaerobacter. tengcongensis (PDB code: 3iqp), followed
by 3D structure modeling with ModeRNA [34].

Second, having structural models of both components of com-
plex, we analyzed the known structures of protein–RNA complexes
that contain proteins with a 3D fold similar to that of YbxF, in order
to predict the RNA-binding site of YbxF. Among proteins with a
similar fold (d.73 according to the SCOP database [79]) we identi-
fied 62 structures that presented a protein–RNA complex and their
superposition revealed a clear structural conservation of the RNA
binding site (data not shown). Following the structural superposi-
tion of RNA molecules from the above-mentioned complexes, we
identified conserved RNA sequences in the area of the interaction
site (residues 16-GUG-18 and 33-AUGA-36). Central residues U17
and U34 within the two RNA sequence motifs were then selected
as potential interaction partners of the corresponding protein res-
idues K21 and A76.

Third, we used the GRAMM method to generate 50,000 alterna-
tive models of YbxF–SAM-I riboswitch complex and we ranked
these models with FILTREST3D [74]. We retained structures, in
which the RNA was bound only in the predicted binding site de-
fined by two distance restraints mentioned above, in which either
a distance between NZ-P atoms of Lys21-U17 pair or a distance be-
tween CB-P atoms of Ala76-U34 pair was smaller than 13 Å, and in
which the sum of deviations from the 13 Å threshold was smaller
than 5 Å667 models that fulfilled this criterion were evaluated
using the DARS-RNP potential and clustered according to geomet-
rical similarity. The biggest cluster contained solutions, in which
the orientation of protein and RNA molecules was similar to that
in homologs with known structure, which supported the docking.
We selected five representative models as our predictions; we
Fig. 1. Comparison of the predicted model of the YbxF–SAM-I riboswitch complex with th
and RNA moieties are shown in salmon and cyan in the model, and in red and blue in
(defined as nucleotide and amino acid residues having at least one pair of non-hydrog
structure: correctly predicted contacts are shown in cyan, contacts present only in the exp
contacts present only in the model are shown in blue. Residue numbers are indicated on t
visualized using RNAmap2D, a program developed in the authors’ laboratory [84].
optimized their local geometry using HyperChem (HyperCube,
Inc.) and submitted them for evaluation to the organizers of the
RNA Puzzles experiment.

The structure of the YbxF–SAM-I riboswitch complex has been
determined by crystallography and is now available in the PDB
database (PDB code: 3v7e). Thus far, the organizers of the RNA Puz-
zles experiment have reported only the accuracy of the RNA moi-
ety. In order to assess the accuracy of the protein–RNA complex,
we superimposed the binding site on the side of the RNA in the
experimental model and in the blind theoretical models (see
Fig. 1 for a comparison of our model number 1 to the experimen-
tally determined structure). The results indicate that the complex
structure as well as the mutual binding mode of the protein and
the RNA were predicted with relatively high accuracy; with RNA
molecules superimposed, the protein model shows RMSD of
2.81 Å to its experimentally determined counterpart. Also the
models predicted 77% of protein–RNA contacts present in the
experimentally determined structure. The biggest differences be-
tween the protein model and the protein native structure are with-
in one of the a helices (Pro39–Gly53) (Fig. 1A). The difference in
local structure between the protein model and the experimental
structure leads to a decrease in the number of the native-like con-
tacts, but it does not prevent an overall correct prediction of orien-
tations and contacts between the protein and RNA molecules
(Fig. 1B).

4.2. Modeling of a protein–RNA complex by combination of template-
based and template-free modeling

The S6:S18 ribosomal protein complex is known to bind to the
16S rRNA and the molecular details of this interaction are well
studied [80]. In our recent study [81], we discovered that this pro-
tein complex also interacts with a structural motif present in the 50
e experimentally determined structure. (A) Superposition of structures. The protein
the experimentally determined structure. (B) Comparison of protein–RNA contacts
en atoms at a distance 6 5 Å) in the model and in the experimentally determined
erimentally determined structure (not observed in the model) are shown in red, and
he axes: x (protein) and y (RNA). Maps of protein–RNA contacts were calculated and



Fig. 2. Left: crystal structure of T. thermophilus S6:S18 ribosomal proteins complex (S6 and S18 subunits are colored in orange and red, respectively) bound to the three way
junction in 16S rRNA (PDB code: 1g1x). Right: model of the E. coli S6:S18 ribosomal proteins complex bound to a structural motif present in the 50 untranslated region of its
own mRNA. The interface region modeled based on T. thermophilus structure as a template is shown in dark blue, with the ‘‘CCR’’ pattern shown in cyan. The region modeled
in template-free manner is shown in grey.
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untranslated region of its own mRNA, and thus presumably regu-
lates translation of the encoded genes. We also found that the
mRNA motif contains a highly conserved ‘‘CCR’’ sequence pattern,
identical to the one that contributes base-specific contacts in the
rRNA-S6:S18 complex interface, and we predicted that the mRNA
motif structurally mimics the protein binding site on the ribosome.
Thus, we decided to build a model of the S6:S18-mRNA complex,
using known structure of the S6:S18-rRNA complex as a template.

The structure of Escherichia coli S6:S18 protein complex was ta-
ken from the crystal structure of the ribosome (PDB code: 3i1m).
The mRNA motif was modeled using a combined template-based
and template-free approach, previously proven to be successful
in the RNA-puzzles experiment [77]. The interface region of the
target RNA containing the ‘‘CCR’’ pattern was modeled by a com-
parative approach using ModeRNA [34]; the three-way junction
of the 16S rRNA bound by S6:S18 complex from Thermus thermo-
philus (PDB code: 1g1x) was used as a template. This template
was also essential to define the relative arrangement of the protein
and RNA components of the model, i.e. the core of the protein–RNA
interface involving the CRR trinucleotide was assumed to be iden-
tical between the rRNA–protein complex (the template) and the
mRNA–protein complex (the target to be modeled). In this case
we have not attempted protein–RNA docking. The rest of the
RNA structure was modeled in a template-free manner, with re-
straints on secondary structure, using SimRNA, a method devel-
oped in the authors’ laboratory, which uses a coarse-grained
representation and a statistical potential [16]. Our model of
S6:S18-mRNA complex (Fig. 2) remains to be verified
experimentally.
5. Conclusion

Over recent years interest in studying protein–RNA complexes
has been rapidly growing. The number of structures of protein-nu-
cleic acid complexes deposited in the PDB database increases each
year (269 in 2007 vs. 459 in 2012), as well as more publications
associated with the term ‘‘RNA-binding proteins’’ appear in Pub-
Med (1874 in 2007 vs. 2226 in 2012). However, due to the
difficulty in the structure determination of protein–RNA com-
plexes, there is also an increasing demand for the development
of computational methods for predicting such structures either
from structures of the components or directly from sequences.
The recognition of importance of modeling RNP complexes is re-
flected in their recent inclusion as targets both in CAPRI and RNA
Puzzles experiments.
All the presented approaches for modeling RNP complexes can
provide practically useful predictions, but they also suffer from
various limitations. One problem specific to RNA modeling is the
relative paucity of experimentally determined RNA and RNP struc-
tures that can be used as templates. It is hoped that the signifi-
cance of this problem will wane with the growing interest in
structural biology of RNA and correspondingly increasing number
of structures solved each year. Another serious problem is at the
stage of docking: the existing computational methods seldom take
into account conformational changes that may occur upon binding,
both in protein and RNA components. One of the possible solutions
is to combine the existing tools that enable template-free modeling
of the protein and RNA components, with scoring functions for the
assessment of intermolecular contacts. The first step in this direc-
tion that has been already made is the development of modeling
techniques that start with preliminary models obtained by e.g. ri-
gid body docking of ‘‘unbound’’ protein and RNA structures, and
carry out re-folding of protein and RNA fragments that participate
in their mutual interactions. The conceptual similarity of successful
algorithms for protein and RNA 3D structure modeling [16] sug-
gests that their combination into unified modeling methods is fea-
sible. Synergy is also expected to appear from the combination of
theoretical predictive methods with low-resolution experimental
analyses. It has been suggested that the structure of many RNP
complexes, such as the spliceosome, may be modeled using cryo-
EM maps as molecular envelopes into which structures of individ-
ual components could be fitted, using restraints from biochemical
experiments and other bioinformatics-based predictions [82]. This
requires the development of new multiresolution modeling meth-
ods and new ways of encoding experimental data (review: [83]).
We hope that the recent surge of interest in protein-RNA interac-
tions will encourage both biologists to use bioinformatics tools to
obtain structural insight into the systems, for which they have ob-
tained experimental data, and the developers of tools to propose
new algorithms and their user-friendly implementations.
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