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Understanding the molecular mechanism of protein–RNA recognition and complex formation is a major
challenge in structural biology. Unfortunately, the experimental determination of protein–RNA com-
plexes by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) is tedious and dif-
ficult. Alternatively, protein–RNA interactions can be predicted by computational methods. Although less
accurate than experimental observations, computational predictions can be sufficiently accurate to
prompt functional hypotheses and guide experiments, e.g. to identify individual amino acid or nucleotide
residues. In this article we review 10 methods for predicting protein–RNA interactions, seven of which
predict RNA-binding sites from protein sequences and three from structures. We also developed a
meta-predictor that uses the output of top three sequence-based primary predictors to calculate a con-
sensus prediction, which outperforms all the primary predictors. In order to fully cover the software for
predicting protein–RNA interactions, we also describe five methods for protein–RNA docking. The article
highlights the strengths and shortcomings of existing methods for the prediction of protein–RNA inter-
actions and provides suggestions for their further development.

� 2011 Elsevier Inc. All rights reserved.
1. Background

Protein–RNA interactions play an essential role in many cellular
processes, such as RNA transcription, reverse transcription, replica-
tion, RNA transport, posttranscriptional processing of RNA, mRNA
translation, and regulation of RNA levels in the cell (Chen and
Varani, 2005; Glisovic et al., 2008). Defects in protein–RNA interac-
tions have been described for a number of diseases, ranging from
neurological disorders to cancer (Cooper et al., 2009; Lukong
et al., 2008). RNA-binding proteins (RBPs) are a large and heteroge-
neous group of macromolecules that fulfill their function using a
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wide range of domain architectures. In particular, there are numer-
ous protein domains involved in RNA binding, with the prevalence
of ab structures, e.g. of the ‘‘Rossmannoid’’ type (Cammer and
Carter, 2010). Some common and well-characterized RNA-binding
domains include the following: RNA Recognition Motif (RRM), K-
homology (KH) domain, RGG box, Sm domain, double stranded
RNA-binding domain (dsRBD), cold-shock domain, Pumilio/FBF
(PUF) domain, and the Piwi/Argonaute/Zwille (PAZ) domain (re-
views: (Chen and Varani, 2005; Lunde et al., 2007)). For some pro-
tein domains, exemplified by the RRM and dsRBD, which include
‘‘RNA’’ in their names (Clery et al., 2008), nearly all members show
RNA-binding activity. In other families the RNA-binding property is
exhibited only by a fraction of members, e.g. in enzyme families
such as Rossmann-fold methyltransferase (RFM), related domains
can bind RNA, DNA, proteins, or other substrates (Anantharaman
et al., 2002; Czerwoniec et al., 2009). The abundance and diversity
of RNA-binding proteins is correlated with the complexity of the
organism they are found in, with the number of RNA-binding pro-
teins reaching thousands in vertebrates (Anantharaman et al.,
2002). It is worth emphasizing that eukaryotic RNA-binding pro-
teins often comprise multiple RNA-binding domains (Glisovic
et al., 2008).

The understanding of protein–RNA interactions improves as
new structures of RNA–protein (RNP) complexes are solved and
the molecular details of interactions analyzed. Unfortunately, the
experimental determination of RNP complexes is a slow and
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difficult process (Ke and Doudna, 2004; Scott and Hennig, 2008). As
of September 2011, 1203 macromolecular complexes involving
both protein and RNA components (but excluding RNA/DNA hy-
brids) were available in the Protein Data Bank (PDB), including
1035 solved by X-ray crystallography, 69 by nuclear magnetic res-
onance (NMR) spectroscopy, and 99 by other methods. These
structures contained 12,753 protein chains interacting with RNAs,
but many proteins were highly similar to each other. After remov-
ing redundant protein chains with sequence identity >90%/40%
only 798/480 proteins remained. Despite the fact that numerous
protein–RNA interactions have been experimentally determined,
for many RNPs, e.g. the spliceosome, RNA-Induced Silencing Com-
plex (RISC), complexes containing Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) and Cleavage/Polyadenylation
Specificity Factor (CPSF), complete high-resolution structures are
not yet available, and our knowledge is based mostly on atomic
structures of isolated components and low-resolution structures
of their assemblies obtained with, e.g. cryo-electron microscopy
(cryo-EM).

Given the scarcity of experimentally determined structures of
RNP complexes, the computational prediction of RNP complex
structures would greatly help studying protein–RNA interactions.
There exists a wealth of low-resolution experimental data that
identify the interacting components and often tie them to particu-
lar functional states. These data can be exploited by bioinformatics
methods for structure prediction. However, while the methodology
for prediction and modeling of proteins and protein–protein com-
plexes is very well established [reviews: (Bujnicki, 2008; Moreira
et al., 2010; Wichadakul et al., 2009)], there are much fewer meth-
ods for predicting and modeling RNA structure and protein–RNA
interactions (Laing and Schlick, 2010; Rother et al., 2011a). In this
article we review bioinformatics methods for predicting RNA-bind-
ing sites for proteins with either known or unknown three-dimen-
sional structures and docking methods for predicting the
structures of RNP complexes.
2. Prediction of RNA binding proteins

Computational predictions of RNA binding addresses three con-
nected problems: (i) whether a given protein binds RNA, (ii) if it
does – which residues in the protein sequence are directly involved
in making contacts with the RNA, and (iii) what is the structure of
the protein–RNA complex. The phosphate backbone of RNA is neg-
atively charged, and it preferentially interacts with positively
charged proteins, whose surfaces are enriched with residues such
as Arg or Lys (Allers and Shamoo, 2001; Jones et al., 1999, 2001;
Nadassy et al., 1999). However, not all positively charged residues
are involved in RNA-binding. In fact almost all proteins include
surface-exposed positively charged residues, and definitely not
all of them bind RNA – they may be involved in binding other an-
ionic ligands (in particular DNA that has a very similar backbone),
formation of salt bridges, catalysis, and other functions. The rela-
tive ratio of positively and negatively charged residues or a theo-
retical pI that can be calculated from protein sequence is also a
poor predictor of RNA binding. There exist negatively charged pro-
teins that bind anionic ligands, including nucleic acids (Ledvina
et al., 1996), e.g. in the set of 44 RNA-binding proteins in the
PDB analyzed in this work (as of September 2011) six (14%) exhibit
a theoretical pI < 7.0. Computational methods have been therefore
developed to identify RNA-binding proteins based mostly on
charge, but some of them utilize other sequence features such as
overall amino acid composition, van der Waals volume, polarity,
etc. For instance Cheng et al. (2008) used position-specific scoring
matrices (PSSMs), while Kumar et al. (2011), Yu et al. (2005) and
Fujishima et al. (2007) used amino acid composition and periodic-
ities as feature vectors to train support vector machines (SVM) for
discrimination of DNA- and/or RNA-binding proteins from proteins
with other functions. For proteins with known structures, Mandel-
Gutfreund and coworkers developed a method to identify patches
of positively charged residues on the surface and to discriminate
between various types of nucleic acid-binding proteins (Shazman
et al., 2007, 2011). There exist other tools for the prediction of
the protein–RNA binding function, which rely on machine learning
methods, mostly support vector machines (SVMs) (Peng et al.,
2011; Shao et al., 2009; Shazman and Mandel-Gutfreund, 2008).
Unfortunately, none of these methods are currently available as
public web servers or standalone programs for easy local installa-
tion. The only such tool that we found available is DRNA (Zhao
et al., 2011), which is also used for identification of protein resi-
dues interacting with RNA. It has been described in Section 4.
3. Prediction of RNA binding residues from protein sequence

The prediction of RNA-binding residues from protein sequence
(usually with an assumption that the protein is known or expected
to bind RNA) mainly relies on using machine learning methods
such as neural networks, Hidden Markov Models (HMMs), and sup-
port vector machines (SVMs). In Table 1 we listed seven publicly
available tools for predicting RNA-binding sites from protein se-
quence alone that do not take any structural information into ac-
count. We have also considered the tools RISP (Tong et al., 2008)
and PRIP (Maetschke and Yuan, 2009), for predicting RNA-binding
sites, but the original URLs were unavailable and we were unable
to find alternative websites at the time of writing this manuscript.

All methods listed in Table 1 are based on machine learning
algorithms. Four methods use SVMs in order to predict RNA inter-
acting protein residues (BindN, BindNPlus, PPRInt and PiRaNhA).
The remaining three methods, RNABindR, NAPS, and PRBR use a
Naïve Bayes classifier, decision trees (C4.5 algorithm), and random
forest algorithms, respectively. These algorithms typically take into
account physicochemical properties of amino acids, in particular
charge, hydrophobicity, predicted features such as solvent accessi-
bility and secondary structure, and often also sequence conserva-
tion, and the local sequence context.
4. Prediction of RNA binding sites from protein structures

The availability of the tertiary structure of a protein can greatly
facilitate the prediction of the RNA-binding site, which is typically
formed by surface-exposed residues that are close to each other in
space, but not necessarily in sequence. RNA binding sites can often
be recognized as positively charged surface patches whose shape is
compatible with binding the negatively charged RNA backbone
(Shazman and Mandel-Gutfreund, 2008; Shazman et al., 2007).
Additionally, visual inspection allows localizing clefts with aro-
matic or hydrophobic residues that may be involved in stacking
interactions with bases of single-stranded RNA. Structure-based
predictive methods may exploit the same information as se-
quence-based methods, but replace the predicted local structural
features (e.g. solvent accessibility and secondary structure) by
the observed ones. Additionally they may utilize more global fea-
tures available only on the 3D level, such as surface shape, distribu-
tion of the electrostatic potential (which may highlight a region of
positive charge in an otherwise negatively charged protein), and
spatial proximity of residues with particular features. The predic-
tion of global or local propensity for RNA binding can be also
achieved by comparing the query structure to known structures
of RNP complexes. Various approaches for predicting RNA-binding
proteins based on structural analysis, and for identification of RNA-
binding residues in these proteins have been reviewed in the



Table 1
Bioinformatics tools for sequence-based prediction of RNA-binding sites in proteins.

Method URL Ref. Description

BindN http://bioinfo.ggc.org/
bindn/

Wang and
Brown (2006)

Uses SVM to predict RNA binding residues based on side chain pKa value, hydrophobicity index and
molecular mass of amino acids. It is also capable of predicting DNA binding residues.

BindN+ http://bioinfo.ggc.org/
bindn+/

Wang et al.
(2010)

An upgraded version of BindN, also using an SVM classifier.

NAPS http://
prediction.bioengr.uic.edu/

Carson et al.
(2010)

Uses a combination of machine learning and C4.5 algorithm to predict both RNA and DNA binding
residues in protein sequences.

PiRaNhA http://
bioinformatics.sussex.ac.uk/
PIRANHA/

Murakami
et al. (2010)

Uses an SVM classifier to predict protein residues interacting with either RNA or DNA. The classifier
makes use of position specific scoring matrices, residue interface propensity, predicted residue
accessibility and residue hydrophobicity.

PPRInt http://www.imtech.res.in/
raghava/pprint/

Kumar et al.
(2007)

Uses an SVM classifier trained on a PSSM profile generated by running PSI-BLAST on a non-redundant
protein sequence database.

RNABindR http://
bindr2.gdcb.iastate.edu/
RNABindR/

Terribilini
et al. (2007)

Uses a Naive Bayes classifier trained on interactions observed in structures of protein–RNA complexes in
the PDB. Additionally, it can be used as an advanced viewer for known Protein–RNA complexes.

PRBR http://www.cbi.seu.edu.cn/
PRBR/

Ma et al.
(2011)

Combines the enriched random forest (ERF) algorithm with a hybrid feature vector, composed of
predicted secondary structure, conservation information of the physicochemical properties of amino
acids and the information about dependence of amino acids with regard to polarity-charge and
hydrophobicity in the protein sequences.
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literature (Chen and Lim, 2008a,b; Maetschke and Yuan, 2009),
however only a few general-purpose algorithms have been imple-
mented in a form available to the public. In particular, the number
of bioinformatics methods for structure-based prediction of RNA-
binding residues is much smaller than that of methods for predict-
ing DNA-binding or protein-binding residues. In Table 2 we listed
two methods that are available as web servers and one method
available as a stand-alone program.

It is worth mentioning that structure-based prediction methods
are agnostic with respect to the methodology used for protein
structure determination, so in principle they can be used to predict
RNA-binding sites for structures obtained with, e.g. X-ray crystal-
lography, NMR, or theoretical modeling. However, all such models
may require special treatment. First, predicting RNA-binding resi-
dues for crystal structures may require editing of the input file,
such as the addition of missing disordered loops by the compara-
tive modeling method, to represent the entire sequence of interest.
Second, structure-based methods typically make predictions for
single models rather than ensembles of multiple models, which
may require the selection of a representative structure or the cal-
culation of a consensus model for NMR ensembles. Third, predict-
ing RNA-binding residues based on theoretical models requires
taking the predicted global and local model quality into account,
because errors and inaccuracies of theoretical models may propa-
gate in the predicted complexes. Finally, many proteins bind RNA
as oligomers, while some methods may accept only single chains,
i.e. monomeric structures.

5. Benchmark of RNA binding site prediction methods

In order to measure and compare the performance of methods
predicting protein–RNA interactions, we created a comparative
benchmark. We tested seven sequence-based methods for predic-
Table 2
Bioinformatics tools for structure-based prediction of RNA-binding sites in proteins.

Method URL Ref. Description

KYG http://cib.cf.ocha.ac.jp/KYG/ Kim et al. (2006) Uses a num
doublets of

DRNA http://sparks.informatics.iupui.edu/
yueyang/DFIRE/dRNA-DB-service

Zhao et al. (2011) Predicts RN
structures:
followed by

OPRA Program available upon request
from the authors

Perez-Cano and
Fernandez-Recio
(2010)

Predicts RN
known pro
tion of protein–RNA interactions from Table 1 (BindN, BindN+,
NAPS, PiRaNhA, PPRInt, PRBR and RNABindR) and three struc-
ture-based methods from Table 2 (KYG, OPRA and DRNA). The test-
ing dataset was compiled from 75 records containing RNP
complexes released between January 1st and April 28th 2011 from
the Protein Data Bank to minimize the likelihood that any of these
structures were used for training of the methods tested. All pro-
tein–RNA residue pairs with atoms closer than 3.5 Å were consid-
ered as interacting. As a result, we obtained a redundant dataset
comprising 949 protein chains. We removed the redundancy on
the protein level with the CD-HIT program (Li and Godzik, 2006),
and kept only one representative per set of proteins with more
than 40% sequence identity. Moreover, we kept only proteins
which were not sequence-similar to proteins used for training indi-
vidual methods (we again used 40% sequence identity threshold
for filtering out close homologs using the CD-HIT program). The fi-
nal dataset was composed of 44 sequences for which all of the
methods returned predictions (see Supplementary Material for
the final dataset used in this study and a compilation of proteins
used for testing individual methods as provided by their respective
authors). There were many cases where some methods failed (e.g.
PiRaNhA and NAPS did not return prediction for chain K from PDB
record 3PLA). Ideally, the test of structure-based predictors should
be carried out for apo variants (i.e. for structures solved in the ab-
sence of the RNA), however the small number of proteins with
structures solved both without the RNA (for making the prediction)
and with the RNA (for testing the prediction’s accuracy) prevents
us from carrying out such an analysis.

For each of the 10 methods under consideration, predictions
were collected for all 44 test sequences. The methods scored each
protein residue with respect to its RNA binding propensity, and
residues with scores exceeding the default threshold values (set
by the methods’ authors) were considered as predicted to be
ber of scores based on the RNA-binding propensity of individual residues,
spatially close residues, sequence profiles, and combinations thereof.
A-binding proteins and RNA binding sites based on similarity to known
it performs a structural alignment to known protein–RNA complex structures
binding assessment with a DFIRE-based statistical energy function.

A-binding residues using a predictive score from propensities of residues at
tein–RNA interfaces weighed by their accessible surface.

http://bioinfo.ggc.org/bindn/
http://bioinfo.ggc.org/bindn/
http://bioinfo.ggc.org/bindn+/
http://bioinfo.ggc.org/bindn+/
http://prediction.bioengr.uic.edu/
http://prediction.bioengr.uic.edu/
http://bioinformatics.sussex.ac.uk/PIRANHA/
http://bioinformatics.sussex.ac.uk/PIRANHA/
http://bioinformatics.sussex.ac.uk/PIRANHA/
http://www.imtech.res.in/raghava/pprint/
http://www.imtech.res.in/raghava/pprint/
http://bindr2.gdcb.iastate.edu/RNABindR/
http://bindr2.gdcb.iastate.edu/RNABindR/
http://bindr2.gdcb.iastate.edu/RNABindR/
http://www.cbi.seu.edu.cn/PRBR/
http://www.cbi.seu.edu.cn/PRBR/
http://cib.cf.ocha.ac.jp/KYG/
http://sparks.informatics.iupui.edu/yueyang/DFIRE/dRNA-DB-service
http://sparks.informatics.iupui.edu/yueyang/DFIRE/dRNA-DB-service


Fig.1. ROC curves of six methods for prediction of RNA-binding residues from
sequence (Table 1) and a meta-predictor created during this study using the best
three sequence-based methods (PiRaNhA, PPRInt and BindN+).
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interacting with the RNA. By comparing predicted interactions
with the ones observed in RNP complexes, we established true
and false positives and negatives. We used these values to create
receiver operating characteristic (ROC) curves by plotting the false
positive rate (1 – specificity, FPR; Eq. (1) against the true positive
rate (sensitivity, TPR; Eq. (2) for each method. We have also
estimated the areas under the ROC curve (AUC) using the compos-
ite trapezoidal rule and calculated the Matthews Correlation
Coefficient (MCC; Eq. (3)) for each method.

TPR ¼ TP
ðTPþ FNÞ ð1Þ

Eq. (1). True positive rate (TPR; sensitivity). TP – number of cor-
rectly predicted interacting residues, FN – number of incorrectly
predicted non-interacting residues.

FPR ¼ 1� TN
ðTNþ FPÞ ð2Þ

Eq. (2). False positive rate (FPR; 1 – specificity). TN – number of
correctly predicted non-interacting residues, FP – number of incor-
rectly predicted interacting residues.

MCC ¼ TP � TN� FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð3Þ

Eq. (3). Matthews Correlation Coefficient (MCC). TP – number of
correctly predicted interacting residues, TN – number of correctly
predicted non-interacting residues, FP – number of incorrectly pre-
dicted interacting residues, FN – number of incorrectly predicted
non-interacting residues.

6. Results of the RNA binding site prediction benchmark

The results of our benchmark presented in Table 3 and Fig. 1
provide an overview of the performance of 10 third-party tools
for the prediction of protein–RNA interactions and one ad hoc cre-
ated meta-predictor (described in a separate section below). We
were not able to perform the ROC analysis in case of the se-
quence-based method PRBR, and all three structure-based meth-
ods (DRNA, KYG and OPRA). The reason was that the output of
those methods did not include scores for individual residues
describing their RNA-binding propensity, which is a compulsory
requirement for such an analysis. For the remaining methods, we
performed the ROC analysis within a range of observed scores
describing the predicted RNA-binding propensity. In case of RNA-
BindR, the output for each protein sequence contained three
Table 3
Results of a benchmark of 10 methods predicting protein–RNA interactions – seven
sequence-based methods listed in Table 1.

Method MCC AUC

Meta-predictor** 0.460 0.835
PiRaNhA 0.435 0.822
BindN+ 0.397 0.821
KYG* 0.382 N/A
DRNA* 0.382 N/A
PPRInt 0.339 0.779
RNABindR 0.317 0.708
OPRA* 0.296 N/A
BindN 0.297 0.733
PRBR 0.294 N/A
NAPS 0.215 0.679

Methods were sorted in descending order according to MCC. N/A – not available,
MCC – Matthews Correlation Coefficient, AUC – area under curve.
* Three structure-based from Table 2 (KYG, OPRA and DRNA).
** An ad hoc meta-predictor developed during this study based on top three
sequence-based methods according to our benchmark (PiRaNhA, PPRInt and
BindN+).
predictions – optimal, high specificity, and high sensitivity. Be-
cause of the fact that no additional scores describing RNA-binding
propensities were provided, we calculated scores based on the con-
gruency of predictions. Therefore, as seen in Fig. 1, the RNABindR
ROC adopts an unusual shape. In case of all other methods, the
ROC analysis was performed based on the scores assigned to pro-
tein residues.

According to our benchmark, methods KYG and DRNA were the
best among the structure-based methods tested, with MCC values
reaching 0.382 in both cases. This value may be overestimated, as
the predictions were tested for protein structures taken from pro-
tein–RNA complexes (i.e. correspond to the RNA-bound conforma-
tion), while in real life the predictions are made for proteins with
known structures, but unknown mode of RNA binding. A test of
predictions made for unbound variants may be done in the future,
when the number of structure pairs with and without RNA grows.
Among the sequence-based methods, the ranking was topped by
PiRaNhA, for which the MCC reached 0.435 and the AUC was esti-
mated to be 0.822. The next two best-scored methods were BindN+
(MCC: 0.397, AUC: 0.821) and PPRInt (MCC: 0.339, AUC: 0.779).
7. Meta-predictor for protein–RNA interactions

Following the benchmark of primary predictors of RNA-inter-
acting residues, we developed an ‘ad hoc’ meta-predictor based
on three sequence-based primary predictors that ranked highest
in our tests (PiRaNhA, PPRInt and BindN+). The meta-predictor
works as follows: first, for a query protein sequence, predictions
are collected from the three above-mentioned primary predictors.
Then, a new meta-score for each residue is calculated as a
weighted mean of three scores using the AUC values from the
benchmark as weights. As the output, the meta-predictor returns
a set of scores for all residues of a given protein sequence query.
A threshold to discriminate between RNA-binding and non-bind-
ing residues was defined according to the point on the meta-pre-
dictor’s ROC curve closest to the values of FPR = 0.0 and TPR = 1.0
(upper left corner). Once the threshold value was selected, we were
able to calculate the MCC value for the meta-predictions. Our
meta-predictor outperformed PiRaNhA only by 1.6% according to
AUC (0.835 vs. 0.822) and by 5.7%, according to MCC (0.460 vs.
0.435), which suggests that the predictions of the currently best
methods are strongly correlated with each other and combining
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them gives a very limited synergy. The meta-predictor is freely
available via the GeneSilico protein structure prediction meta-ser-
ver (http://iimcb.genesilico.pl/meta2/) (Kurowski and Bujnicki,
2003).
8. Recommendations for users interested in predicting RNA-
binding residues for their protein sequences and/or structures

The recommendation which program should be used depends
mainly on the data available. If a structure is available for the
target protein, the user should check whether it exhibits high sim-
ilarity to other RNA-binding proteins with already known struc-
tures in complex with RNA, e.g. by running a BLAST (Altschul
et al., 1997) search against the proteins in the PDB database. In
such a case, e.g. if the aim is to predict the RNA-binding site in a
new RRM protein structure that has many homologs with struc-
tures solved in complex with RNA (Clery et al., 2008), the best
option is to use structure based methods: KYG, OPRA, and DRNA.
For a query protein with known structure that has no close homo-
log, we recommend to use the top-scoring structure-predictor KYG
and to compare its result with the top-performing sequence-based
predictors (primary methods: PiRaNhA, PPRInt and BindN+ or our
meta-predictor). In the absence of the protein structure, the
above-mentioned sequence-based predictors of RNA-binding resi-
dues should be used. Additionally, the protein sequence may be
used to model the structure computationally, in particular using
the comparative approach. For this, we recommend the GeneSilico
structure prediction metaserver developed in our laboratory
(Kurowski and Bujnicki, 2003). The resulting model may be used
as a query for structure-based methods. However, theoretical mod-
els usually contain various errors and inaccuracies and their use for
predicting binding sites requires caution. In particular, a theoreti-
cal model should be first evaluated with Model Quality Assessment
Programs (Kryshtafovych and Fidelis, 2009) and entire models and/
or individual residues with low scores should be regarded as unre-
liable for any further predictions. In all cases, where high specific-
ity (i.e. high confidence of positive predictions) is desired, and the
presence of false negatives (i.e. missed true RNA-binding residues)
is not a problem, we recommend to use not just one, but several
methods that scored best in a comparative benchmark, and to
select residues predicted to be involved in binding by all or most
methods used.
9. Protein–RNA docking

Docking methods are widely used to predict three-dimensional
structures of macromolecular complexes, starting from coordi-
nates of their components (Moreira et al., 2010). The larger mole-
cule is usually referred to as the receptor, while the smaller
molecule is usually called the ligand. The problem of predicting
the structure of a complex can be split into two sub-problems: to
search the conformational space of possible orientations and con-
formations (poses) of the components, and to distinguish near-na-
tive structures from all other alternative complex models (decoys)
explored through the search algorithm. Many methods combine
both tasks, while others specialize only in the assessment of de-
coys, leaving their generation to the user.

An ideal docking method should be able to assemble the struc-
tures of components into a complex, and score the most native-like
decoy (a complex structure closest to the native) significantly bet-
ter than any non-native one. In reality, the structure of the complex
is unknown. Structures of binding partners, which are solved indi-
vidually, usually undergo conformational changes upon associa-
tion, in a process known as induced fit. ‘‘Unbound’’ docking
algorithms must be tolerant to this difficulty. Conformational
changes are either modeled explicitly by high-resolution methods,
which make such analyses computationally very demanding, or
introduce a certain level of ‘fuzziness’ (reviews: (Moreira et al.,
2010; Zacharias, 2010)).

Thus far, a large number of protein–protein docking methods
have been developed (reviews: (Janin, 2010; Moreira et al., 2010;
Vakser and Kundrotas, 2008)), whereas the number of methods
for modeling RNP complexes is still limited. In Table 4 we listed
some of the publicly available web resources and standalone dock-
ing methods that accept protein and RNA coordinates as an input
to generate RNP complex decoys, as well as scoring functions for
the selection of presumably native-like models from decoy sets.
To our best knowledge, no docking methods have been developed
specifically for RNP complexes. Instead, a number of methods for
modeling protein–protein complexes have been adapted to deal
with nucleic acid molecules as receptors and/or ligands.

One interesting and frequently neglected aspect of RNA struc-
ture and protein–RNA interactions is the presence of posttranscrip-
tional modifications, which increase the basic set of four
nucleotides (A, U, G, C) to more than 100 variants with altered base
and/or ribose moieties (Dunin-Horkawicz et al., 2006). Modified
residues in RNA are involved in many processes, including RNA
folding and RNA–RNA interactions, but also specific protein–RNA
recognition and binding (Grosjean, 2009; Mucha et al., 2001; Soma
et al., 2003). It must be noted, that modified residues are often
problematic for the available docking methods, because they are
not represented in the standard potentials, and must be converted
into the unmodified counterparts in RNA structures used for dock-
ing, e.g. by using the ModeRNA software (Rother et al., 2011b).

Most protein–RNA docking methods described in Table 4, i.e.
GRAMM, PatchDock, and Hex, which are capable of handling mod-
ified nucleotides in RNA molecules, do not have appropriate
scoring functions to identify near-native structures of RNP com-
plexes, hence they require special extensions for scoring protein–
RNA interactions. In the course of the last few years a few statisti-
cal potentials for the evaluation of protein–RNA interactions have
been proposed. The Varani group developed a distance-dependent
all-atom statistical potential (Zheng et al., 2007). It performs well
in discriminating models of RNP complexes that are very close to
the native structure, i.e. with the root mean square deviation
(RMSD) < 5 Å. However, during a real (unbound) docking experi-
ment it may be difficult to obtain many decoys with RMSD < 5 Å,
hence this approach is unsuitable for modeling of complexes that
may exhibit conformational changes beyond an RMSD of 5 Å be-
tween the bound and unbound forms. In most cases of protein–
RNA binding, moderate conformational changes of protein and/or
RNA molecules occur upon complex formation. There, low resolu-
tion methods that apply a coarse-grained energy model to a
coarse-grained representation (i.e. without looking at the atomic
details that change upon binding) have a chance to be practically
useful. Another potential developed by the Fernandez group (Per-
ez-Cano et al., 2010) works on the residue-nucleotide level. It
was designed to improve the discriminative power of the FTDock
potential and is not available as a standalone program.

We have recently developed two new, medium-resolution,
knowledge-based potentials for scoring models of RNP complexes
(Tuszynska and Bujnicki, 2011): the quasichemical potential (QUA-
SI-RNP) and the decoys as the reference state potential (DARS-
RNP). These potentials are based on a reduced representation of
protein and RNA, use the same mathematical base but differ in
their reference state. The reduced representation is intermediate
between the atom-level Varani potential and the residue-level Fer-
nandez potential. Both statistical potentials comprise a distance
and orientation-dependent energy term, a site-dependent energy
term, and a penalty for steric clashes. The site-dependent term as-
sesses the probability of interaction of amino acid residues with

http://iimcb.genesilico.pl/meta2/


Table 4
Examples of publicly available bioinformatics tools for modeling of protein–RNA complexes.

Method URL Ref. Description

Haddock http://www.nmr.chem.uu.nl/haddock/
http://haddock.science.uu.nl/services/
HADDOCK

Dominguez
et al. (2003)

Uses biochemical and/or biophysical interaction data as restraints. Enables
docking of various molecules including proteins, nucleic acids, and small
molecules. Available as a standalone program and a server.

GRAMM http://vakser.bioinformatics.ku.edu/main/
resources_gramm1.03.php

Katchalski-
Katzir et al.
(1992)

A program for low-resolution docking, performs a 6-dimensional search through
the rigid body translations and rotations of the ligand molecule. Does not allow
for using restraints during the docking process. Capable of generating decoys for
any molecule, but requires specialized external scoring functions for complexes
involving molecules other than proteins.

Hex http://hex.loria.fr/
http://hexserver.loria.fr/

Ritchie and
Kemp (2000)

Enables protein–protein and protein–nucleic acid docking. Relies on using
spherical polar Fourier (SPF) correlations and graphics processor units (GPUs) to
accelerate the calculations. Knowledge of one or both binding sites may be used to
focus and shorten the calculation. Decoy scoring includes shape matching and
electrostatics. The method does not give a possibility to save all docking decoys
and does not have a special function for protein–RNA complexes.

PatchDock http://bioinfo3d.cs.tau.ac.il/PatchDock/
index.html

Schneidman-
Duhovny et al.
(2005)

A geometry-based molecular docking algorithm available both as a standalone
program and a web server, developed for prediction of protein–protein and
protein–small molecule complexes. It can generate poses for protein–nucleic
acids complexes, but does not have the appropriate scoring function to identify
near-native models. It allows to define potential binding sites in both ligand and
receptor molecules.

FTDock (3D-Dock) http://www.sbg.bio.ic.ac.uk/docking/ Gabb et al.
(1997)

Performs rigid-body docking. This program was developed for protein–protein
docking; it accepts RNA and DNA molecules (without modified nucleotides), but
has no specialized scoring function for protein–RNA complexes.

DARS-RNP and
QUASI-RNP

http://www.genesilico.pl/RNP/ Tuszynska and
Bujnicki (2011)

Statistical and quasi-chemical potentials for scoring of protein–RNA decoys
obtained with other methods, e.g. GRAMM, Hex, PatchDock, FTDock, etc.
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the Watson–Crick, sugar, and Hoogsteen edges of nucleotide resi-
dues, as defined by (Leontis and Westhof, 2001). The DARS-RNP
and QUASI-RNP programs also allow for clustering the best scored
structures, which helps in identifying ensembles of similar struc-
tures with good scores that are more likely to represent near-
native conformations.

We compared the discriminatory power of the four aforemen-
tioned statistical potentials for the identification of native-like
RNP complexes among decoys generated by docking and found
that the DARS-RNP potentials exhibits the highest discriminatory
power for decoy sets that include near-native structures without
steric clashes, as well as for decoys generated with the GRAMM
method (Tuszynska and Bujnicki, 2011). The advantage of the
DARS-RNP potential over the QUASI-RNP potential (as well as over
the other two potentials developed by other groups) can be
explained by the realistic treatment of ‘‘random’’ protein–RNA
interactions. In the DARS-based approach, the statistics of amino
acid-nucleotide contacts are inferred from geometrically plausible,
but biologically irrelevant decoys. The calculation of a DARS-based
potential requires, however, the calculation of a large number of
decoys for each complex in the training set, hence it requires a con-
siderably bigger computational effort, which may be prohibitive in
case of large training sets.

Recently, a new coarse-grained potential for protein–RNA dock-
ing was described (Setny and Zacharias, 2011), which is an exten-
sion of the ATTRACT docking method (Zacharias, 2003). The
potential was tested on 110 crystallographic structures of pro-
tein–RNA complexes; however it was not yet compared directly
with other available statistical potentials described above, and it
is not yet able to use decoys generated by other methods.
10. Conclusions

In recent years, the number of reported protein–RNA complexes
has been rapidly increasing. This growth is visible both in the PDB
database as the yearly increase of deposited protein–nucleic acid
complexes (258 in 2007 vs. 449 in 2010), and in the PubMed
database as the change in the number of publications associated
with the term ‘‘RNA-binding proteins’’ (2843 in 2007 vs. 3152 in
2010). Still, the determination of structures for proteins in complex
with their partner RNAs is laborious and slow, hence there is a
large demand for the development of computational methods for
predicting such structures either from structures of the compo-
nents or directly from sequences. Despite the fact that current pre-
dictors are still far from being perfect, they can provide useful hints
to guide experimental analyses. The importance of modeling RNP
complexes is reflected in their recent inclusion as targets in the
Critical Assessment of Prediction of Interactions (CAPRI) experi-
ment (de Vries et al., 2010).

Our benchmark shows that the currently available methods for
predicting RNA-binding proteins and RNA-binding sites are far
away from the high accuracy desired for practical applications.
Small improvements can be achieved by integrating the available
methods into meta-predictors. However, the top-performing
RNA-binding site predictors based on sequence generate results
that are highly correlated with each other, which suggests that fur-
ther progress can be made by developing methods based on other
sequence or structure features than those used so far. On the other
hand, the existing structure-based predictors rely to a large extent
on detection of global similarity to known structures of RNA-bind-
ing proteins, and they do not seem to utilize the full potential of
the 3D information. We expect that the most recent developments
in the area of protein–RNA docking potentials will prompt the
work towards a new generation of predictive methods that utilize
both structure and sequence information and will enable accurate
predictions for protein structures without obvious similarity to
known RNA binders.

Another area for the future development concerns macromolec-
ular docking. None of the methods mentioned in this article are
capable of predicting the structures of RNP complexes that involve
large conformational changes. In our opinion the main problem of
the existing docking methods (typically protein–protein docking
methods adapted to handle RNA structures) is their inability to
take conformational changes into account on the level of RNA, or
both RNA and protein simultaneously. Recently, a number of RNA

http://www.nmr.chem.uu.nl/haddock/
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3D modeling methods have been described that enable fast RNA
folding simulations (Cao and Chen, 2005; Das and Baker, 2007;
Ding et al., 2008; Parisien and Major, 2008). We believe that the
next useful step would be to accommodate these or similar ap-
proaches to re-fold fragments of the RNA molecule predicted to
form contacts with the protein partner, and optimize the energy
of both internal and mutual interactions. The conceptual similarity
of successful algorithms for protein and RNA 3D structure model-
ing (Rother et al., 2011a) suggests that their combination into
unified modeling methods is feasible.

Synergy is also expected from the combination of theoretical
predictive methods with low-resolution experimental analyses.
Structural probing experiments such as footprinting and cross-
linking can provide information about secondary structure, inter-
and intramolecular interactions (Weeks, 2010), while SAXS and
cryo-EM experiments can be used to obtain information about
the shape of macromolecular complexes (Lipfert and Doniach,
2007; Zhou, 2008). For many macromolecular complexes, such as
the spliceosome, it has been suggested that the structure may be
modeled by using cryo-EM maps, as molecular envelopes into
which structures of individual components could be fitted, using
restraints from biochemical experiments and other bioinformat-
ics-based predictions (Jurica, 2008). Various methods for modeling
RNA structures and RNP complexes based on low-resolution exper-
imental data have been described in the literature (Das et al., 2008;
Mertens and Svergun, 2010; Yang et al., 2010) and a number of
case studies have been published (e.g. (Tsai et al., 2003)). Nonethe-
less, dedicated methods for automated prediction of protein–RNA
interactions and RNP complex structure modeling based on exper-
imental data remain to be developed.
Note added in proof
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olis, USA) for re-analyzing our data and for personal communica-
tion. Our discussion with the Yaoqi Zhou group prompted a
correction of their scripts, leading to an improvement of DRNA.
Following the correction in DRNA, additional 8 proteins in our
dataset can be predicted as RNA-binding by their method, increas-
ing the number of predicted RNA-binding proteins to 20, and
boosting the MCC of DRNA to 0.49. If all proteins are considered
as RNA-binding and a cutoff confidence score of 0.47 is used, the
DRNA method achieves MCC of 0.53 for all proteins. For 20 proteins
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