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2
First Steps of Protein
Structure Prediction

Karolina Majorek, Łukasz Kozłowski, Marcin J
↪

akalski and Janusz M. Bujnicki

2.1 Introduction

The famous hypothesis formulated by the Nobel Prize laureate Christian Anfinsen states
that

The three-dimensional structure of a native protein [. . .] is determined by the totality of
interatomic interactions and hence by the amino acid sequence, in a given environment. In
terms of natural selection through the ‘design’ of macromolecules during evolution, this idea
emphasized the fact that a protein molecule only makes stable, structural sense when it exists
under conditions similar to those for which it was selected – the so-called physiological
state.1,2

On the one hand, essentially all globular domains in proteins studied so far appear to
conform to this rule. Most proteins (or at least their major fragments) have been found
to fold into unique, well-defined, stable three-dimensional structures under very broadly
defined ‘physiological conditions’ that also include ‘laboratory conditions’ under which
protein samples are prepared for biophysical and biochemical characterization. In agree-
ment with Anfinsen’s hypothesis, variations in conditions (e.g. change of pH or addition
of a ligand) or changes in a sequence (e.g. due to proteolytic cleavage and removal of a
sequence fragment) may result in structural changes that are often functionally relevant,
e.g. if a protein’s function requires opening and closing of a cavity that is used for bind-
ing of another molecule. On the other hand, a growing number of protein sequences (or
sequence fragments) have been found to be mostly unstructured (review:3). These ‘intrin-
sically disordered proteins’ (IDPs) may assume a defined structure only under very specific
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40 First Steps of Protein Structure Prediction

conditions, e.g. in the presence of another molecule (e.g. upon binding to another protein
or a ligand). In the absence of a stabilizing factor, these sequences exist as an ensemble
of rapidly interconverting different conformations. Thus, for many IDPs, the Anfinsen’s
‘stable physiological state for which the protein was selected’ is significantly different from
‘standard’ conditions assumed for other proteins.

Anfinsen’s hypothesis implies that the knowledge of amino acid sequence and of a given
environment should be sufficient to infer the native structure of a protein (or to predict the
lack of a stable structure). However, despite seemingly solid theoretical foundations, accu-
rate prediction of protein structure from the primary chemical structure of the polypeptide
chain remains one of the greatest challenges in biology. Thus far, there have been two major
approaches to predict the unknown protein structure from known amino acid sequence: one
relies on our knowledge of ‘first principles’, i.e. the laws of physics, while the other is based
on rules inferred from comparative analysis of experimentally solved protein structures.
Both approaches had some successes, but neither of them has achieved the final goal.

The ‘physical’ approach has been successfully applied already in 1951 by Linus Pauling
and Robert Corey, who predicted the existence of two periodic structural motifs formally
defined by the pattern of hydrogen bonds that may be formed by the protein backbone: the
spiral α-helix with 3.6 amino acid residues per turn4 and the flat β-sheet comprising two or
more β-strands having an extended zigzag conformation.5 These two secondary structure
elements (SSEs) now are known to be major features of protein architecture, with >50% of
residues of an average protein assuming either helical or extended conformation. Helices
and strands provide a natural frame for insightful protein structure visualization (with a
helix often represented as a tube or a spiral and strand as an arrow), and are widely used to
describe protein three-dimensional folds. They are also used by many programs that use
simplified protein structure representation (e.g. SSEs instead of individual amino acids) to
speed up calculations, e.g. for superposition of protein structures.

Secondary structure is much more conserved in the evolution than amino acid sequence;
therefore accurate prediction of SSEs from sequence would be of great benefit in structural
bioinformatics. For instance the knowledge of SSEs can help to guide sequence alignment
or improve existing sequence alignment of remotely related sequences with low sequence
similarity (see Chapter 1 by Kaminska et al. in this volume). Secondary structure predic-
tion is also a good starting point toward elucidating the three-dimensional structure – it
serves as an intermediate step in the protein fold-recognition procedure, i.e. identification
of templates for comparative modeling (see Chapter 4 by Kosinski et al.) and may provide
useful restraints both in comparative modeling and in de novo modeling (see Chapter 5 by
Gront et al.). However, it has been found that it is quite difficult to predict accurately, which
type of secondary structure is assumed by each amino acid residue of a protein.6 Compu-
tational simulations of peptide and protein folding based on the ‘physics-based’ approach
have been carried out in attempt to predict both local structure and global conformation
(review:7). The first applications of force field methods to study peptide conformations
date back to calculations performed by Nemethy and Scheraga.8 However, due to an ex-
tremely large number of degrees of freedom and very complex calculations of energies,
such simulations require extremely large computer resources, such as supercomputers or
massively parallel distributed computing.9 Alas, despite recent advancement in computer
hardware and software, physics-based simulation techniques remain incapable of confi-
dently predicting structures of even moderately sized proteins (>100 amino acid residues).
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On the other hand, as soon as the first protein structures solved by X-ray crystallography
have been determined, it has been observed that secondary structures tend to exhibit regular
arrangements of amino acid residues of certain type. The regularities are due to the local
periodicity of helical and extended conformations (3.6 and 2 residues per repeated segment,
respectively), and the global tendency of a protein to form a well-packed hydrophobic core
and to place hydrophilic residues at the surface (at least in water-soluble proteins). For
example, SSEs buried in the protein core are composed mainly of hydrophobic residues,
while SSEs at the protein surface tend to be amphipathic and show an alternating pattern
of hydrophobic and hydrophilic residues (usually 010101 for strands and 0011011 or
0010011 for helices), allowing the respective side chains to be buried in the protein core or
exposed to the solvent. Thus, as soon as a sufficient number of protein structures have been
determined to make useful statistics, ‘knowledge-based’ methods have been developed,
aiming at predicting SSEs based on calculated tendencies of different residues or peptide
fragments to assume particular conformations. The first attempt of predicting secondary
structure of polypeptides using the ‘knowledge-based’ approach dates back to the same time
as the afore-mentioned physics-based analyses. It was performed in 1965 by Guzzo,10 who
inferred simple rules for preferences of different amino acid residues to form helical and
non-helical regions. With the growing number of available protein structures and sequences
the statistics have quickly improved, and new algorithms have been developed, yielding
methods that are far from perfect, but achieve useful accuracy of about 80%. Currently
the ‘knowledge-based’ approach is used by essentially all methods for secondary structure
prediction, as well as methods for order/disorder prediction and for inference of other
simple structural features from the primary sequence. This chapter aims at providing a
comprehensive overview of these methods. The ‘physical’ approach to protein structure
prediction is beyond the scope of this chapter and will not be reviewed here – instead, it
will be referred to in other chapters, in particular Chapter 5 by Gront et al. Because of
significant differences between proteins that function as water-soluble and those that are
embedded in biological membranes, secondary structure prediction methods for each of
two types are different and will be discussed separately. We will also discuss prediction
of higher order motifs formed by certain types of SSEs, the so called ‘supersecondary’
structures (e.g. coiled coils or β hairpins), and prediction of contacts between residues that
are remote in primary structure.

2.2 Definition of Secondary Structure and Its Assignment
for Known Protein Structures

One caveat of the knowledge-based structure prediction is the requirement of unambigu-
ous definition of secondary structure elements or ordered vs. disordered regions. Statistical
methods and machine learning methods require the input data to be appropriately clas-
sified in order to make meaningful predictions. Unfortunately, defining the boundaries
between disordered and ordered regions or between helix, sheet, and coil structures is
arbitrary, and commonly accepted standard assignments do not exist. Therefore, various
researchers employed different criteria that in some cases have lead to considerably different
assignments.
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42 First Steps of Protein Structure Prediction

Secondary structure is formally defined by the hydrogen bonds, but the hydrogen bonding
is correlated with other features, such as dihedral angels generally adopted by particular
types of secondary structure, which has given rise to less formal definitions of SSEs.
To standardize secondary structure assignment, the Dictionary of Secondary Structure in
Proteins (DSSP) was designed.11 It was the first method for protein secondary structure
assignment available as a computer program, and has remained most popular until now.
DSSP classifies each amino acid residue in a protein with known 3D structure into one
of 8 types of secondary structure, based on recognition of hydrogen bonding patterns and
geometrical features defined in terms of the concepts torsion and curvature of differential
geometry. The 7 types of SSEs include the α-helix (H), the β-strand (E, for ‘extended’),
and less frequent types of secondary structure namely non-α helices: 3/10 (G) and π (I),
isolated β-bridge (B), highly curved bend (S) and hydrogen-bonded turn (T), while the
remaining residues are classified as outside of SSEs.11

Another quite popular method for secondary structure assignment named STRIDE was
proposed later by Frishman and Argos.12 STRIDE is based on the combined use of hy-
drogen bond energy and statistically derived backbone torsional angle information, with
parameters of the pattern recognition procedure optimized to improve (compared to DSSP)
agreement with manual designations provided by the crystallographers as a standard-
of-truth. More recently developed methods for secondary structure assignment include
P-SEA,13 SECSTR,14 KAKSI,15 SEGNO,16 and PALSSE.17 These methods are based on
either the hydrogen-bond pattern, geometric features, expert knowledge or their combi-
nations. However, they often disagree on their assignments, up to 25%. The discrepancy
among different methods is caused by nonideal configurations of helices and sheets in
experimentally solved structures and by different definitions of helices and strands. Of
particular interest is PALSSE, which identifies only two types of SSEs that can be ap-
proximated by vectors: helix and strand. In contrast to other algorithms, which identify a
secondary structure state for every residue in a protein chain, PALSSE attributes residues to
SSEs in such a way that consecutive elements may overlap, thus allowing residues located
at the overlapping region to have more than one secondary structure type. This method
is robust to coordinate errors and can be used to define SSEs even in poorly refined and
low-resolution structures (e.g. if only C-α atoms are available, thus if no hydrogen-bonds
are present). PALSSE usually assigns a larger fraction of residues to SSEs as compared to
other methods, e.g. 80% vs. 53% in the case of DSSP.17

Discrepancies with structural assignment concern not only algorithms. Protein structures
are dynamic objects with some regions more mobile than others. Local conformations near
the ends of secondary structures vary under native conditions, but may be forced to assume
a single conformation in crystals due to packing constraints, hence secondary structure
assignments differ by about 5–15 percentage points between different X-ray versions or
different NMR models for the same protein6 (Figure 2.1). This inherent protein flexibil-
ity is the main reason why the theoretical upper limit of secondary structure prediction
accuracy is about 90%, for a particular SSE assignment method. Recently it has been
proposed that instead of relying on single structures, structure assignment methods should
be assessed based on the similarity of the secondary structures assigned to established pair-
wise sequence-alignment benchmarks, where these benchmarks are determined by prior
structural alignments of the protein pairs. The use of this criterion has led to identification
of STRIDE and KAKSI as the most robust methods (PALSSE was not included in that
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Figure 2.1 Illustration of secondary structure, conformational variability, and order vs disor-
der. Three-dimensional structure of small protein SUMO-1 solved by NMR (1a5r in Protein
Data Bank), 10 alternative models shown in the ‘cartoon’ representation. Black spirals indicate
α-helices, dark grey arrows indicate β-strands, white coils indicate loops. While the central part
shows relatively ordered structure (with only some fluctuations at one end of the helix), the
N- and C-terminal regions (left and right, respectively) show ‘intrinsic disorder’. Interestingly,
a short helical region persists in the disordered N-terminal tail, demonstrating the presence of
secondary structure despite the absence of stable tertiary structure

comparison), and to development of a consensus of STRIDE, KAKSI, SECSTR, and
P-SEA, called SKSP, which is 2–3% higher in agreement with structurally aligned residues
than DSSP for three established alignment benchmarks.18

Summarizing, assignments of secondary structure for one particular protein may vary,
depending on the method used. Thus, in theoretical protein structure prediction it is im-
portant to select, which type of assignment is going to be predicted. Thus far, DSSP has
been used as the ‘golden standard’ because of its popularity among crystallographers,
but it is likely that methods for secondary structure assignment that are more consistent
with the 3D structure alignments (e.g. SKSP) may lead to improved secondary struc-
ture prediction. Another caveat of secondary structure prediction methods is that they are
aimed at predicting only the three basic classes of local structure: (H)elix, (E)xtended, and
(C)oil; thus, e.g. an 8-letter ‘structural alphabet’ used in the DSSP notation is reduced to a
3-letter alphabet. In different algorithms it is done according to different conversion rules,
which may yield an apparent increase of accuracy, but cause errors when the predicted
secondary structure is used to predict 3D structure.6 Karplus and coworkers found that the
replacement of simple alphabets of secondary structure with highly informative, detailed
alphabets can improve detection and alignment of structurally similar, but remotely related
proteins.19 Examples of such alphabets include STR, an enhanced version of DSSP that
subdivides DSSP letter E (strand) into six letters, according to properties of a residue’s rela-
tionship to its strand partners (number of partners and their parallel/antiparallel character)
or Protein Blocks, a set of overlapping protein backbone fragments of length 5 amino acid
residues.20 HMMSTR21 implements yet another solution to this problem: in this method
protein structure is represented by short structural fragments taken from the database of
known structures; for secondary structure it uses an alphabet of 11 conformation states, 10
corresponding to �-� angle regions and one for cis-peptide bonds. A recently developed
method Real-SPINE22,23 predicts real values of torsion angles from a given sequence.



P1: OTA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

chap02 JWBK331-Bujnicki October 1, 2008 8:21 Printer: Yet to come

44 First Steps of Protein Structure Prediction

2.3 Prediction of Secondary Structure and Solvent Accessibility
for Water-soluble Proteins

The first empirical prediction system aiming at predicting SSEs from protein sequence,
based on statistics calculated from structures solved by X-ray crystallography, was devel-
oped by Fasman and Chou.24,25 This very simple method is based on analysis of the relative
frequency of each amino acid in helices, strands and coils and on assumption that single
residue individually influences secondary structure. Subsequently, a more sophisticated
GOR method has been developed, which is based on information theory and Bayesian
statistics, and takes into account not only one residue but also adjacent positions in the
sequence. These methods have been built-in into commercial software packages for protein
sequence analysis and structure modeling and have become very popular among biologists
despite their accuracy was only slightly better than random. The main limitation of these
early methods was a small amount of known 3D structures, from which parameters could
be derived. Besides, these methods did not utilize any evolutionary information and were
applicable to single sequences rather than for multiple sequence alignments (MSAs) of
homologous sequences.26 Although over the years, both the Chou-Fasman27 and the GOR
methods28 have been improved, the level of their accuracy is inferior to the best modern
methods.

A significant improvement in prediction accuracy (>70%) has been achieved by ‘sec-
ond generation’ methods such as PHD,29 SAM-T98,30 and PSIPRED,31 which utilized
MSA-derived information concerning sequence conservation, often combined with ma-
chine learning techniques such as artificial neural networks (ANNs), nearest-neighbor
search (NNS) methods, and support vector machines (SVMs), or advanced statistical
methods such as Hidden Markov Models (HMM) (review:32). These methods were also
made available as web servers (Table 2.1). MSA, provided by the user or generated by
an internal routine of an algorithm, is usually based on identification of homologs by
searches of protein sequence databases (see Chapter 1 by Kaminska et al. in this volume).
It is important to note that PSIPRED was the first method, in which iterative PSI-BLAST
sequence searches have been introduced, compared to single-pass searches in earlier meth-
ods. Currently, iterative database searches to obtain the input MSA for prediction methods
are considered a standard. Typically, patterns in sequence variability observed in MSA
provide information on conservation of core elements (hydrophobic core and regions
important for protein function), while the location of insertions and deletions (indels)
hints at a position of surface-exposed loops. Incorporated machine learning techniques
allow training the methods on known structures to learn characteristic sequence-structure
patterns and then use those patterns to predict the secondary structure of the query pro-
tein. Most of the SSE prediction methods of the above-mentioned generation, or their
derivatives developed later, have been associated with predictors of solvent accessibil-
ity used to identify residues that are buried to different extents in the hydrophobic core
(Table 2.2).

In addition to methods for predicting the three main types of SEEs, there are several
methods based on sequence profile analysis for predicting certain types of local structure,
including various hairpin structures,52 or specialized in α-turns,71,72 β-turns,51,73 γ -turns,50

and π -turns.74 There are also methods to predict conformation of individual residues, e.g.
the trans/cis state of Pro.75,76 To our knowledge, these types of methods have not yet been
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Table 2.1 Software for secondary structure prediction

Program URL (http://)

Three-state (Helix/Extended/Coil) prediction
IPSSP33 (for single sequences) exon.gatech.edu/genemark/ipssp/webIPSSP.cgi
PSIPRED31 bioinf.cs.ucl.ac.uk/psipred/
SSPRO34 scratch.proteomics.ics.uci.edu/
PHD29 www.predictprotein.org/
PROFsec35 www.predictprotein.org/
PRED2ARY36 alexander.ucsf.edu/∼jmc/pred2ary/
APSSP237 www.imtech.res.in/raghava/apssp2/
PREDATOR38 ftp://ftp.ebi.ac.uk/pub/software/unix/predator/
HMMSTR21 www.bioinfo.rpi.edu/∼bystrc/hmmstr/
NPREDICT39 www.cmpharm.ucsf.edu/∼nomi/nnpredict.html
PORTER40 distill.ucd.ie/porter/
HYPROSPII41 bioinformatics.iis.sinica.edu.tw/HYPROSPII/
SAM-T0642 www.soe.ucsc.edu/compbio/SAM T06/T06-query.html
JNET43 www.compbio.dundee.ac.uk/Software/JNet/jnet.html
SABLE44 sable.cchmc.org/
YASSPP45 glaros.dtc.umn.edu/yasspp/
YASPIN46 ibivu.cs.vu.nl/programs/yaspinwww/
CRNPred47 ftp.bioinformatics.org/pub/crnpred/
JUFO3D48 www.meilerlab.org/index.php
SPINE22 sparks.informatics.iupui.edu/SPINE/spine.html

Other types of secondary and supersecondary structure, and other types of local
conformation

TURNS (α, β, γ )49,50 imtech.res.in/raghava/
β-Turn51 serine.umdnj.edu/∼zhangq3/betaturn/prediction.htm
TURNPRED52 www.meilerlab.org/index.php
COILS53 www.ch.embnet.org/software/COILS form.html
MARCOIL54 www.isrec.isb-sib.ch/webmarcoil/webmarcoilC1.html
PCOILS55 toolkit.tuebingen.mpg.de/pcoils
PairCoil256 groups.csail.mit.edu/cb/paircoil2/paircoil2.html
MultiCoil57 groups.csail.mit.edu/cb/multicoil/cgi-bin/multicoil.cgi
LearnCoil58 groups.csail.mit.edu/cb/learncoil-vmf/cgi-bin/vmf.cgi

‘Meta-servers’ for secondary structure prediction
JPRED59 www.compbio.dundee.ac.uk/∼www-jpred/
NPS@60 npsa-pbil.ibcp.fr
META-PP61 www.predictprotein.org/meta.php
PROTEUS62 wishart.biology.ualberta.ca/proteus
DISTILL63 distill.ucd.ie
GeneSilico64 genesilico.pl/meta2/

integrated into metaservers for secondary or tertiary structure prediction and their practical
utility for protein modeling and function prediction remains to be established.

Currently the recommended approach to secondary structure prediction involves combin-
ing the results of different methods; it may involve advanced machine learning approaches,
such as voting, linear discrimination, neural networks or decision trees77 or even simple
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Table 2.2 Software for solvent accessibility prediction

Program URL (http://)

Jnet43 www.compbio.dundee.ac.uk/Software/JNet/jnet.html
PHDacc35 www.predictprotein.org/
PROFacc35 www.predictprotein.org/
SABLE65 sable.cchmc.org
NETASA66 www.netasa.org
MLRprdsec67 spg.biosci.tsinghua.edu.cn/
WESA68 pipe.scs.fsu.edu/wesa.html
ACCpro69 scratch.proteomics.ics.uci.edu/
SARpred70 www.imtech.res.in/raghava/sarpred/
SPINE22 sparks.informatics.iupui.edu/SPINE/spine.html
PaleAle63 distill.ucd.ie/paleale/

consensus.78 The idea of combining different prediction methods was first implemented
in JPRED,59 a consensus meta-server that standardizes input and output requirements of a
range of secondary structure prediction algorithms, each representing a different prediction
strategy, and computes a consensus of PHD, NNSSP, DSC, and PREDATOR secondary
structure predictions. In addition, the output of the JPRED server includes predictions of
solvent accessibility by the JNET method,43 as well as predictions of coiled-coil regions
and transmembrane helices (see below), which however are not directly incorporated in
the calculation of the secondary structure.

The most recent class of meta-approaches, exemplified by PROTEUS62 exploits the
observation that if an experimentally determined three-dimensional structure of a closely
related protein is known, then copying the secondary structure assignment from the known
structure provides a better result than by predicting it de novo. PROTEUS initially carries
out a sequence similarity search against the PDB database in order to determine if the
whole or a part of the query sequence is significantly similar to a known structure, and if
such a template structure is found, secondary structure mapping is carried out from the
template to the query based on a sequence alignment. For the sequence segments that
are not covered by template structures, de novo secondary structure prediction is carried
out with three different, high quality neural network approaches (PSIPRED, JNET and
TRANSSEC), whose results are combined into a consensus prediction by the fourth neural
network. Merging template-based predictions and de novo predictions allows PROTEUS
to yield a full sequence prediction, regardless of the extent of sequence overlap to a PDB
hit (when complete 3D-to-2D mapping is achieved, when only partial coverage is provided
and when no homologue with known structure can be found), and to achieve high average
accuracy of >80% per residue. A similar approach of merging template-based and de novo
predictions of secondary structure and solvent accessibility has been implemented in the
DISTILL suite.63

While the early methods of secondary structure prediction were about 60–65% accurate,
with accuracy for β-strands only slightly better than random,6 the best modern methods
reach about 80% accuracy per residue,22 with ∼10% lower accuracy for β-strands. The
difference between theoretical upper limit of prediction accuracy and actual secondary
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structure prediction accuracy, and between level of prediction accuracy of α-helices and
β-strands, is mainly due to difficult to detect long-range interactions that may influence
secondary structure formation. It has been shown that the same amino acid sequence of
substantial length may fold as α-helix when in one position in primary protein sequence
but as β-sheet when in another sequence context.79 Besides, during the folding process,
a certain fragment of a protein might first adopt a secondary structure preferred by the
local sequence and later, because of non-local interactions, be transformed to another
secondary structure. The latter concern has been addressed in the method 3D-JUFO,48

which combines iterative de novo secondary structure prediction using an approach similar
to PSIPRED with tertiary structure prediction with the ROSETTA method (see Chapter
5 by Gront et al.), followed by re-prediction of SSEs based on local environment of
particular residues observed in models of tertiary structure. 3D-JUFO achieves remarkable
accuracy of 80%, with notable improvement of accuracy for β-strand prediction (76%)
over sequence-only methods. Another interesting recently developed method that brings
the accuracy of secondary structure prediction close to the theoretical limit combines
bioinformatics methodology with experimental techniques of circular dichroism (CD)
and Fourier transform infrared (FTIR) spectroscopy for assessing the overall secondary
structure content.80

2.4 Prediction of Secondary Structure for Transmembrane Proteins

Membrane proteins are different from water-soluble proteins in that a large fraction of
their surface is hydrophobic to enable stability in the environment of a lipid bilayer. They
constitute about 20–30% of all proteins in the fully sequenced genomes, and are typically
involved in cell signaling, molecular pumping and energy transduction. Integral membrane
proteins consist of one or more transmembrane (TM) segments and can be divided into
two structural classes: the α-helical TM proteins and the β-barrel TM proteins, varying
in structure, localization and physicochemical features. Typical TM proteins of the more
abundant α-helical class are present in all types of biological membranes including outer
membranes. They comprise one or more hydrophobic α-helical membrane spanning regions
separated by hydrophilic loops that are exposed into the solvent (review:81). TM β-barrel
proteins are found only in outer membranes of Gram-negative bacteria, cell wall of Gram-
positive bacteria, and outer membranes of mitochondria and chloroplasts. They consist of
different number of antiparallel, membrane spanning β-strands with a simple up-and-down
topology.82

TM proteins aggregate and precipitate in water and require detergents or nonpolar sol-
vents for extraction, therefore they are much more difficult to analyze experimentally than
their soluble counterparts, in relation to all steps from overexpression to high-resolution
structure determination. Although TM proteins represent the most important drug targets,
their structure determination has lagged behind that for soluble proteins; currently they
represent less than 1% of available crystal structures.83 On the one hand, this situation
generates a great deal of pressure to develop effective methods for predicting the structure
of TM proteins. On the other hand, the paucity of structural data hampers the development
of knowledge-based approaches. Nonetheless, for both types of TM proteins specialized
structure predictors have been designed, but due to the relatively easily detectable patterns
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of hydrophobic residues forming α-helical TM segments and much smaller amount of
known β-barrel TM proteins structures, the majority of them was focused on the α-helical
TM proteins until quite recently (review:84).

Prediction of TM helices should be intuitively easy due to their hydrophobic nature. How-
ever, predictions based solely on hydrophobicity profiles have high error rates. Besides,
hydrophobic signal peptides may be confused with TM helices. It is also a consecutive chal-
lenge to predict TM proteins topology. Prediction of the way in which TM segments cross
the membrane (inside-out or outside-in) is done mainly by considering the different charge
distribution between the inside (cytoplasmic) and outside (extracellular) regions connect-
ing TM segments, and by application of the so-called ‘positive-inside rule’85 based on the
observation that there is an overrepresentation of positively charged residues in the intra-
cellular loops of TM proteins. Contemporary approaches usually predict both localization
of TM segments and their orientation (topology). The best methods such as PHOBIUS86

or MEMSAT387 utilize evolutionary information as well as discriminate against signal
peptides. Prediction of TM segments for β-barrel proteins is more difficult, because the
strands are amphipathic. They contain 10–22 residues with alternating hydrophobic side
chains facing the lipid bilayer and hydrophilic side chains facing the internal pore. To
predict the β-barrel type of TM proteins a small number of specialized algorithms have
been developed based on standard statistical and machine learning techniques including
HMMs, ANNs, or SVMs (Table 2.3).

As in the case of secondary structure prediction for globular soluble proteins, consensus
methods perform much better compared to each individual prediction method separately
and the recommended strategy for identification membrane spanning segments and their
orientation in membranes is to use many different methods and combine results into a
consensus prediction. Examples of ‘metaservers’ that combine the results of several indi-
vidual methods, providing a more accurate consensus prediction, include BPROMPT,100

ConPredII,110 and PONGO111 for α-helical TM proteins, and ConBBPRED114 for β-barrel
TM proteins. The newest trends in TM structure prediction include meta-predictions that
utilize predictions of solvent accessibility and secondary structure propensity typical for
globular proteins in the form of ‘structural profiles’.102 There have also been attempts
to make concurrent prediction of secondary and tertiary structure by simulating folding
in lipid membranes, e.g. with modified versions of de novo structure prediction methods
FRAGFOLD115 and ROSETTA.116,117

In addition to predictors specific for TM proteins, a new method MeTaDoR has been
recently proposed that predicts membrane-binding peripheral proteins that do not form an
integral part of the membrane, but bind to it mostly in a reversible manner and thereby func-
tion in various important processes, including cell signaling and membrane trafficking.113

2.5 Prediction of Supersecondary Structure

Individual SSEs may be arranged in simple geometrical shapes forming recurring super-
secondary structures. There is a number of well-defined α–α, β–β, α–β and β–α structural
motifs that serve as ‘building blocks’ of tertiary structure. Prediction of supersecondary
structures can be an important step toward building a tertiary structure from the speci-
fied secondary structure elements.118 The β–hairpin, comprising two adjacent antiparallel
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Table 2.3 Software for prediction of TM regions in proteins

Program URL (http://)

α-TM proteins
HMMTOP88 www.enzim.hu/hmmtop/
DAS89 www.sbc.su.se/∼miklos/DAS/
PHDhtm90 www.predictprotein.org/
TMAP91 bioinfo4.limbo.ifm.liu.se/tmap/index.html
TMHMM92 www.cbs.dtu.dk/services/TMHMM/
Tmpred93 www.ch.embnet.org/software/TMPRED form.html
MEMSAT387 bioinf.cs.ucl.ac.uk/memsat
TopPred294 bioweb.pasteur.fr/seqanal/interfaces/toppred.html
WHAT95 saier-144-37.ucsd.edu/what.html
THUMBUP96 sparks.informatics.iupui.edu/Softwares-Services files/thumbup.htm
UMDHMM96 sparks.informatics.iupui.edu/Softwares-Services files/umdhmm.htm
PRED-TMR97 athina.biol.uoa.gr/PRED-TMR/
HMM-TM98 biophysics.biol.uoa.gr/HMM-TM/
ORIENTM99 athina.biol.uoa.gr/orienTM/
BROMPT100 www.jenner.ac.uk/BPROMPT
LOCALIZOME101 localizome.org
PHOBIUS86 phobius.sbc.su.se/
MINNOU102 minnou.cchmc.org

β-Transmembrane proteins
BBF*103 www-biology.ucsd.edu/∼msaier/transport/software/bbfsource.tar.gz
HMM-B2TMR**104 gpcr.biocomp.unibo.it/biodec/
MINNOU102 minnou.cchmc.org
B2TMPRED105 gpcr.biocomp.unibo.it/cgi/predictors/outer/pred outercgi.cgi
PRED-TMBB106 bioinformatics.biol.uoa.gr/PRED-TMBB/
PROFtmb107 cubic.bioc.columbia.edu/services/proftmb/
TMBETA-NET108 psfs.cbrc.jp/tmbeta-net/
BOMP109 www.bioinfo.no/tools/bomp

Metaservers
BPROMPT (α)100 www.jenner.ac.uk/BPROMPT
ConPredII (α)110 bioinfo.si.hirosaki-u.ac.jp/∼ConPred2/
PONGO (α)111 pongo.biocomp.unibo.it/pongo/
TUPS (α)112 sparks.informatics.iupui.edu/Softwares-Services files/tups.htm
ConBBPRED (β)106 bioinformatics.biol.uoa.gr/ConBBPRED/

Membrane-binding peripheral proteins
MeTaDo113 proteomics.bioengr.uic.edu/metador

∗The BBF program is freely available to academic users upon request to the corresponding author.
∗∗HMM-B2TMR is a commercial program, demo version is available.

hydrogen bonded β-strands, is an example of the frequently occurring motif for which
predictors have been developed. BhairPred119 is an example of a method for discriminating
hairpins from non-hairpins; obviously it achieves high accuracy only if the prediction of
secondary structure is correct. Coiled coils are another type of super-secondary structure
characterized by a bundle of two or more α-helices wrapping around each other. Coiled
coil structures have been implicated in inter- and intraprotein interactions, and may be
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formed by helices formed by segments of sequence distant in the primary structure or
even contributed by different proteins. Thus, coiled coils allow monomeric building blocks
to form complex assemblages that can serve as molecular motors and springs (review:
ref.120). The helices forming coiled coils have a unique pattern of hydrophobicity, which
repeats every seven residues (five hydrophobic and two hydrophilic). This sequence pe-
riodicity has prompted the development of special algorithms to predict the location of
α-helices that form coiled coils. According to the recent benchmark, the two best compu-
tational methods are a HMM-based MARCOIL54 and PCOILS,55 followed by PairCoil256

(Table 2.2).

2.6 Disorder Prediction

During the past decade, the literature has exploded with reports on intrinsically unstruc-
tured proteins (IDPs). Currently it is estimated that 30–60% of proteins are predicted to
contain long stretches of disordered residues. Many of the disordered regions have been
confirmed experimentally; they have been often found to be essential for protein function.
Interestingly, intrinsic disorder appears to be significantly correlated with certain terms
from functional ontologies and with specific functional motifs.121–124 In particular, linear
motifs125 that harbor sites of posttranslational modification, such as phosphorylation, or
sites of protein–protein interactions, often fall into regions that are locally disordered or
undergo order-disorder transition in different, biologically relevant situations.126,127 (see
Chapter 1 by Kaminska et al. in this volume). With respect to molecular/biochemical
function, IDPs have been frequently implicated in protein-nucleic acid interactions as tran-
scription factors or in protein–protein interactions as e.g. regulators of enzyme activity.
With respect to cellular roles, they have been implicated in regulatory processes, in particu-
lar in regulation of gene expression on the level of transcription and RNA processing, and in
cellular signaling. On a more general level, IDPs are crucial for cell survival, proliferation,
differentiation and apoptosis. Dysfunctions of IDPs may therefore lead to cancer, which
makes them particularly important from a biomedical point of view. On the other hand, dis-
ordered regions often prevent crystallization of proteins, or the generation of interpretable
NMR data, and in protein bioinformatics – they introduce compositional biases that ham-
per comparison of sequences of ordered regions. Recognition of disordered regions in a
protein is therefore important for delineating boundaries of stably folded protein domains
for structural and functional studies and for reducing bias in sequence similarity analyses
by avoiding alignment of disordered regions against ordered ones (reviews:128,129). De-
tection of disordered regions may also facilitate identification of domains (see Chapter
1 by Kaminska et al.). A very important resource for disorder is the DISPROT database
(http://www.disprot.org).130 It links structure and function information for proteins that
contains at least one experimentally determined disordered region.

The relatively frequent occurrence of IDPs and their importance in understanding pro-
tein structure-function relationships and cellular processes make it worthwhile to develop
predictors of protein disordered regions. Since the SEG algorithm for identification of low-
complexity regions that are typically associated with molecular disorder was developed
in 1994,131 an increasing number of groups have been developing such methods. How-
ever, as with secondary structure, it is not immediately clear how to unambiguously define
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‘disorder’. The lack of stable structure and conformational heterogeneity can manifest
itself either at the secondary or tertiary level, and may include sites with varying extent
of residual secondary structure and conformational mobility: molten globules, pre-molten
globules, liquid-like collapsed-disordered state, or gas-like extended-disordered state.132

Various researchers employed different criteria for defining disorder, resulting in numer-
ous predictors that attempt to identify different features. Thus, depending on a research
question being asked, using a single disorder predictor may be insufficient to achieve a
meaningful prediction. Ferron et al.128 presented an informative review of a number of
methods published until 2006, highlighting their advantages and drawbacks. Table 2.4
presents succinct descriptions of disorder predictors, taking into account also the most
recently published methods.

According to our own benchmark focused at accuracy of predicting regions of short dis-
order (using the criterion employed in CASP-7, i.e. the absence of resolved coordinates in
crystal structures153), the best methods include POODLE,147 DisPSSMP,138 and iPDA.142

We have developed a meta-predictor that reports the results of two primary coiled-coil pre-
dictors (COILS and Marcoil; see above and Table 2.2), and 10 primary disorder predictors
(DISOPRED2, GlobPlot, Spritz, DISPROT (VSL2), IUPred, POODLE-L, POODLE-S,
iPDA, PrDOS, and DisPSSMP, see Table 2.4). It also calculates a consensus prediction.
The disorder meta-predictor is available via the gateway of the GeneSilico metaserver64 at
http://genesilico.pl/meta2/.

2.7 Prediction of Long-range Contacts between Amino Acid Residues

In addition to predicting local structure, a number of methods have been developed to predict
contacts between residues that are remote in primary structure. This type of information is
of particular interest, because it has been shown that it is possible to directly infer three-
dimensional protein structures, if a sufficiently large number of contacts are known with
sufficient accuracy. It has been estimated that as few as one contact on average per seven
residues may be sufficient.154 Various measures of distance and various thresholds may be
used to define a contact between two residues (see e.g. ref.155), however the most common
definition of contact used in prediction methods is as a Cβ-Cβ pair (Cα in the case of Gly
residue) less than or equal to 8 A

◦
apart.156 According to the recent benchmark within the

framework of the CASP7 experiment, the best contact predictor is an ANN associated with
the SAM-T06 structure prediction server.157 Other well-performing programs (according
to the CASP7 benchmark or to other tests published by their authors) that are available as
web-servers have been summarized in Table 2.5.

Special kinds of methods for long-range contact prediction are those for identification
of Cys residues involved in disulfide bond formation (review: ref.158). Disulfide bonds are
primary covalent cross-links between two Cys residues in proteins that play critical roles
in stabilizing the protein structures. They can impose a substantial distance and angular
constraint on the backbone of protein, thus making a large contribution to the stabilization
of protein tertiary structures. A number of proposed algorithms for prediction of disulfide
bonding states of Cys (involved in disulfide formation or not), as well as prediction of
disulfide connectivity patterns (with the prior knowledge of disulfide bonding states) have
been implemented as freely available web servers (Table 2.5). Most of these methods
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Table 2.4 Software for disorder prediction

Program URL (http://) Short description

DisEMBLTM133 Dis.embl.de/ ANN trained to predict classic loops
(DSSP), flexible loops with high
B-factors, missing coordinates in
X-ray structures, regions of
low-complexity and prone to
aggregation.

DISOPRED2134 bioinf.cs.ucl.ac.uk/disopred/
disopred.html

SVM trained to predict residues with
missing coordinates. Standalone
version available.

DISpro135 www.ics.uci.edu/∼baldig/
dispro.html

Recursive neural networks (RNNs)
trained to predict missing
coordinates.

DISPROT136,137 www.ist.temple.edu/disprot/
predictor.php

VL2 (least-squares regression) and
VL3 (ANN) predict long disorder,
VSL2 predicts both short and long
disorder. Standalone version
available.

DisPSSMP138 biominer.bime.ntu.edu.tw/
dispssmp/

Radial Basis Function Network
(RBFN) trained to predict missing
coordinates.

DRIP-PRED139 sbcweb.pdc.kth.se/cgi-bin/
maccallr/disorder/submit.pl

Self-organizing maps (SOMs) trained
to predict missing coordinates.

FoldIndex C©140 Bip.weizmann.ac.il/fldbin/findex Simple method to predict whether a
given protein will fold or not, based
on average hydrophobicity and net
charge.

FoldUnfold141 skuld.protres.ru/∼mlobanov/
ogu/ogu.cgi

A statistical method to predict regions
of weak packing density (less than
8 A

◦
between heavy atoms of

non-adjacent residues).
GlobPlot2133 globplot.embl.de/ A simple method based on several

hydrophobicity scales to predict
regions of missing coordinates and
loops with high B-factors.

iPDA142 biominer.cse.yzu.edu.tw/ipda A successor of DisPSSMP.
Incorporates information about
sequence conservation, predicted
secondary structure, sequence
complexity and hydrophobic
clusters.

IUPred143 iupred.enzim.hu/ Estimates pairwise interaction
energies using a statistical potential.
Disordered regions tend to exhibit
poor inter-residue contact capacity.

NORSp144 www.rostlab.org/services/NORSp/ Predicts long regions exposed to the
solvent, with no regular secondary
structure.

PONDR R©145 www.pondr.com/ A commercial package containing
several predictors based on FFNNs.



P1: OTA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

chap02 JWBK331-Bujnicki October 1, 2008 8:21 Printer: Yet to come

Summary 53

Table 2.4 (continued)

Program URL (http://) Short description

POODLE
(S,L,W)146,147

mbs.cbrc.jp/poodle/poodle.html L predicts long disorder using an
SVM. S adds analysis of PSSMs
generated by PSI-BLAST to detect
short disorder. W uses Joachims’
spectral graph transducer (SGT) to
classify entire proteins as either
disordered or ordered.

PrDOS148 prdos.hgc.jp Predicts missing coordinates using
SVM and PSSMs from PSI-BLAST.

PreLink149 genomics.eu.org/prelink/ Identifies regions with biased
composition and poor in
hydrophobic clusters to predict
regions with missing coordinates.

RONN150 www.strubi.ox.ac.uk/RONN Predicts missing coordinates using an
ANN.

SEG131 mendel.imp.ac.at/METHODS/
seg.server.html

Ancient precursor of modern disorder
predictors, identifies regions of low
sequence complexity.

SPRITZ151 distill.ucd.ie/spritz/ Predicts long and short disorder
(missing coordinates) using two
separate SVMs. Utilizes secondary
structure predicted by PORTER.

Grishin Lab
Disorder
Predictor152

prodata.swmed.edu/disorder/
disorder prediction/predict.cgi

Predicts missing coordinates based on
a PSSM and optimized propensities
of amino acid residues toward
disorder.

GeneSilico64 genesilico.pl/meta2/ A metaserver that predicts different
types of disorder using weighted
consensus of several methods.

employ combinations of various machine-learning techniques and utilize information from
multiple sequence alignments (e.g. to identify correlated Cys pairs) and predicted secondary
structure. Their reported prediction accuracy reaches 80%, but different methods have not
been compared directly with each other on the same test set.

2.8 Summary

To obtain better quality of secondary structure prediction, when no related structures are
known, it is advisable to follow some general rules:

First, it is important to use multiple sequence information, but if target sequence shows
high similarity to none or to only a few other proteins it is worth trying to search dif-
ferent databases (e.g. not only the non-redundant database at the NCBI, but also protein
sequences deduced from unfinished genomes and environmental sequencing projects) to
find moderately divergent sequences that can be used to build MSA (see also Chapter 1
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Table 2.5 Software for prediction of long-range contacts and disulfide bonds

Program URL (http://)

SAM-T06157 www.soe.ucsc.edu/research/compbio/SAM T06/T06-query.html
GPCPred159 sbcweb.pdc.kth.se/cgi-bin/maccallr/gpcpred/submit.pl
PROFcon160 www.predictprotein.org/submit profcon.html
CONpro161 www.ics.uci.edu/∼baldig/scratch/
SVMcon162 www.bioinfotool.org/svmcon.html
CRNPRED47 ftp.bioinformatics.org/pub/crnpred/
CMAPpro69 scratch.proteomics.ics.uci.edu/
Distill151 distill.ucd.ie/distill/
PoCM163 foo.maths.uq.edu.au/∼nick/Protein/contact.html
CMA164 ligin.weizmann.ac.il/cma/
HMMSTR-CM165 www.bioinfo.rpi.edu/∼bystrc/hmmstr/server.php
BETApro (β)166 www.ics.uci.edu/∼baldig/betasheet.html
DiANNA (C-C)167 clavius.bc.edu/∼clotelab/DiANNA/
DIpro 2.0 (C-C)168 contact.ics.uci.edu/bridge.html
DISULFIND (C-C)169 cassandra.dsi.unifi.it/disulfind/index.php
GDAP (C-C)170 www.doe-mbi.ucla.edu/∼boconnor/GDAP/
DCON (C-C)171 gpcr.biocomp.unibo.it/cgi/predictors/cys-cys/pred dconcgi.cgi
DISULFIDE (C-C)172 foo.maths.uq.edu.au/∼huber/disulfide/

by Kaminska et al.). If the sequence is a true ‘ORFan’ with no homologs, a specialized
method IPSSP33 (Table 2.1) may be used. Alignments that include remotely related se-
quences should be inspected in the most divergent regions, and sequences that cannot
be aligned with confidence should be removed. In case of secondary structure prediction
algorithms that do not accept an MSA as an input (but e.g. construct one from scratch by
themselves), secondary structure may be predicted independently for a few homologous
sequences and checked for mutual consistency. Correctly aligned positions should display
similar structure; therefore regions of low sequence similarity with different predictions
should be checked for possible errors in MSA.

Second, we recommend using meta-servers for disorder and secondary structure pre-
diction, because combining results of several best prediction methods into a consensus
prediction is more reliable than relying on any individual method alone. Agreement be-
tween methods usually indicates confident prediction, while disagreement may indicate
various things: different peculiarities of methods used, poor alignment in the input data,
and/or non-standard type of secondary structure, such as surface-exposed β-strands with
bulges that are often mispredicted as helices due to their irregular pattern of hydrophobic
and hydrophilic residues. It is also important to remember that specialized methods are
usually better for predicting particular types of structure than general-purpose methods for
secondary structure prediction. Therefore, it may be useful to use methods for prediction
of TM regions to pre-screen sequence for non-globular elements and ‘mask’ them before
considering regular secondary structure prediction.

Third, when selecting ‘best’ methods for consensus prediction it is important to remem-
ber that many authors use different benchmarks to assess their methods and that many
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published accuracies have been shown to be overestimated, when these methods were as-
sessed in rigorous blind tests on standard benchmarks, such as within CASP173 or EVA.174

Although secondary structure predictions are no longer assessed in CASP, the EVA website
(http://cubic.bioc.columbia.edu/eva/) is updated automatically each week, to cope with the
large number of existing prediction servers and the constant changes in the prediction meth-
ods. EVA currently assesses servers for secondary structure prediction, contact prediction,
comparative protein structure modeling and threading/fold recognition. The identity of the
test set assures that the competition is fair, while a large sample of targets assures that
methods are compared reliably.

Fourth, we recommend making simultaneous predictions of secondary structure, solvent
accessibility, and disorder, as they usually reinforce each other (e.g. regions of disorder
usually exhibit little tendency to form secondary structure and their residues are predicted
to be largely solvent-exposed). However, discrepancies in this regard (i.e. presence of
confidently predicted secondary structure and/or buried residues within regions of disorder)
may indicate interesting structural and functional elements, such as partially folded molten
globule-like structures or candidates for linear motifs (see Chapter 1 by Kaminska et al.
in this volume). Thus, again we recommend using meta-servers for making predictions
on the level of primary and secondary structure, in particular if they are going to be used
as restraints for modeling of protein tertiary structure (see articles by Kosinski et al. and
Gront et al. in this volume).
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